Spin-transfer torques and emergent electrodynamics in magnetic Skyrmion crystals

Similar documents
A. de Saint-Exupéry (1943)

Magnonics in skyrmion-hosting chiral magnetic materials

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University

Neutron scattering from Skyrmions in helimagnets. Jonas Kindervater

Skyrmion Dynamics in Thin Films of Chiral Magnets

Skyrmion Dynamics and Topological Transport Phenomena

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet

Stability of skyrmion lattices and symmetries of Dzyaloshinskii-Moriya magnets. Alexey A. Kovalev Utkan Güngördü Rabindra Nepal

arxiv: v2 [cond-mat.mes-hall] 1 May 2015

Skyrmions in quasi-2d chiral magnets

Institut für Theoretische Physik

Berry Phase Effects on Charge and Spin Transport

Exploration of the helimagnetic and skyrmion lattice phase diagram in Cu 2 OSeO 3 using magneto-electric susceptibility

arxiv: v1 [cond-mat.mes-hall] 10 Aug 2013

Multiferroic skyrmions

Skyrmions in magnetic materials Download slides from:

arxiv: v2 [cond-mat.mes-hall] 8 May 2013

arxiv: v1 [cond-mat.str-el] 22 Apr 2015

Emergent electrodynamics in magnetic systems with a focus on magnetic skyrmions

Manipulating Magnetic Structures in Chiral Metals by Currents

Geometry and Spin Transport in Skyrmion Magnets

Mesoscopic Spintronics

Spintronics KITP, UCSB. Interfacial spin-orbit coupling and chirality. Hyun-Woo Lee (POSTECH, KOREA)

arxiv: v1 [cond-mat.mtrl-sci] 18 Apr 2016

arxiv: v1 [cond-mat.mtrl-sci] 20 Sep 2012

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Antiferromagnetic Textures

Shuichi Murakami Department of Physics, Tokyo Institute of Technology

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Nucleation, stabilization and manipulation of magnetic skyrmions

Berry Phase Effects on Electronic Properties

Physics of Semiconductors

Spin fluctuations in MnGe chiral Magnet

Damping of magnetization dynamics

Direct observation of the skyrmion Hall effect

Vortex States in a Non-Abelian Magnetic Field

arxiv: v1 [cond-mat.str-el] 2 Jan 2015

Quantum Spin Liquids and Majorana Metals

The Superfluid Phase s of Helium 3

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Magnetoresistance due to Broken C 4 Symmetry in Cubic B20 Chiral Magnets

Physics Department Research Area Strongly Correlated Electron Systems. Annual Report 2009 / 2010

Baton Rouge, LA Abstract: 1. Introduction: PACS numbers: m, Np, Fj

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

Science of Magnetic Skyrmions

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Protection of the surface states of a topological insulator: Berry phase perspective

CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS

Baton Rouge, LA Abstract: 1. Introduction: PACS numbers: m, Np, Fj

THEORY OF SPIN HALL EFFECT AND INTERFACE SPIN-ORBIT COUPLING

Skyrmion à la carte. Bertrand Dupé. Skyrmion à la carte Bertrand Dupé. Institute of Physics, Johannes Gutenberg University of Mainz, Germany

Strongly correlated critical chiral paramagnets

arxiv: v4 [cond-mat.mes-hall] 3 Mar 2015

Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Current-induced Domain Wall Dynamics

Exploring Topological Phases With Quantum Walks

An alternative to the topological interpretation of the transverse resistivity anomalies in SrRuO 3

Topological Hall effect studied in simple models

Ultrasonic elastic responses in monopole lattice arxiv: v2 [cond-mat.mes-hall] 10 Mar 2017

Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory

Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) - Overview -

Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions

Rotating vortex-antivortex dipoles in ferromagnets under spin-polarised current Stavros Komineas

Blowing Magnetic Skyrmion Bubbles

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

J. Fukuda and S. Žumer, Quasi two-dimensional Skyrmion lattices in a chiral nematic liquid crystal,

A Centrosymmetric Hexagonal Magnet with Superstable Biskyrmion Magnetic Nanodomains in a Wide Temperature Range of K

Supplementary Figures

Delft University of Technology

arxiv: v1 [physics.ins-det] 2 Oct 2017

Orbital magnetization in insulators with broken time-reversal symmetry. David Vanderbilt Rutgers University

Probing Wigner Crystals in the 2DEG using Microwaves

Preface Introduction to the electron liquid

Quantum critical itinerant ferromagnetism

arxiv: v3 [cond-mat.mes-hall] 12 Apr 2017

Matrix product states for the fractional quantum Hall effect

Magnetism in Condensed Matter

Vortices and other topological defects in ultracold atomic gases

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

Magnetic domain theory in dynamics

Bannenberg, Lars; Lefering, Anton; Kakurai, K.; Onose, Y; Endoh, Y.; Tokura, Y; Pappas, Catherine

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

arxiv: v3 [cond-mat.stat-mech] 1 Dec 2016

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Universal transport at the edge: Disorder, interactions, and topological protection

Recent developments in spintronic

Les états de bord d un. isolant de Hall atomique

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Quantum Quenches in Chern Insulators

Skyrmions in symmetric bilayers

arxiv: v1 [cond-mat.mes-hall] 22 Jan 2019

Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

Lecture I. Spin Orbitronics

Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications

Transcription:

Spin-transfer torques and emergent electrodynamics in magnetic Skyrmion crystals Universität zu Köln

collaboration: K. Everschor, B. Binz, A. Rosch Universität zu Köln R. Duine Utrecht University T. Schulz, R. Ritz, M. Halder, M. Wagner, C. Franz & F. Jonietz, S. Mühlbauer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni C. Pfleiderer Universität München (TU) Science 330, 1648 (2010), PRB 84, 064401, (2011), Nature Physics submitted

Itinerant chiral magnets MnSi, Fe1 xcoxsi, MnGe, FeGe,... Bravais lattice: point group: simple cubic P213 (B20) no inversion symmetry chiral magnetism magnetisation: helical ground state

Chiral magnets in a magnetic field MnSi Skyrmion crystal S. Mühlbauer et al. Science (2009) [111]

Magnetic skyrmions Tony Skyrme (1961,1962) stereographic projection from sphere to plane: hedgehog topologically stable object with quantized winding number W = 1 4π d 2 r ˆM x ˆM y ˆM counts skyrmions!

Skyrmion crystals Bogdanov & Yablonskii (1989) single winding number per magnetic unit cell chiral energy gain magnetic field B magnetic energy gain magnetic lattice constant: (spin-orbit coupling) ~20 nm (MnSi) ~100 nm (Fe0.5Co0.5Si)

Skyrmion crystals single winding number per magnetic unit cell translationally invariant along B: skyrmion tubes magnetic field B magnetic lattice constant: (spin-orbit coupling) ~20 nm (MnSi) ~100 nm (Fe0.5Co0.5Si)

Observation of skyrmion crystals First observation: in MnSi - neutron scattering S. Mühlbauer et al. Science (2009) T. Adams et al. PRL (2011) real space momentum space Subsequently: in Fe1-xCoxSi - neutron scattering W. Münzer et al. PRB (2010) magnetic Bragg peaks: 6-fold symmetry correlation length: ~100 μm! transmission electron microscopy on films: (Tokura group) in Fe0.5Co0.5Si X. Z. Yu et al. Nature (2010) in FeGe X. Z. Yu et al. Nature Materials (2011) Fe0.5Co0.5Si FeGe room temperature!

Skyrmionics coupling magnetic skyrmions to electric currents currents couple efficiently to changes of magnetization: for example: S. Maekawa (IMR, Tohoku University) domain-wall motion in nanosized samples Tsoi et al. APL (2003) Beach et al. Nature Materials (2005) Hayashi et al. Nature Physics (2007) spin-transfer torque effects in a 3d macroscopic sample?

Landau-Lifshitz Gilbert equation theoretical description: magnetic texture in the presence of spin current vs e.g. Zhang & Lee, PRL (2004) ( t + v s ) ˆM = ˆM H eff + ˆM (α t + βv s ) ˆM +... Berry-phase spin torque precession in effective field damping effective field is determined by the magnetic texture: H eff = δf δ M with the Ginzburg-Landau functional F = F [ M] additional damping term: ( ˆM( i ˆM (α t + β v s ) ˆM)) i ˆM Zhang&Zhang (2009), J. Zang, M. Mostovoy, J. Han, and N. Nagaosa (2011)

Skyrmionics generalized Thiele approach: project LLG equation onto zero modes translation symmetry: center-coordinate of a single Skyrmion x(t) A. A. Thiele, PRL (1973) spin current x(t) v s effective equation of motion: G (v s x(t)) + D(βv s α x(t)) = F pinning disorder: pinning forces magnetic texture determines gyrocoupling vector dissipative tensor G i = 1 2 ε ijk dr ˆM( j ˆM k ˆM) D ij = dr i ˆM j ˆM winding number, counts Skyrmions!

Spin Magnus force for F pinning 0 drift of the skyrmion crystal G (v s x(t)) + D(β v s α x(t)) = 0 in the presence of Skyrmions: G = 0 transversal Magnus force Magnus force spin current v s drag force x(t) Skyrmion: steady twist of magnetization rotating spin-supercurrent + dissipative spin current vs spinning ball interacting with viscous air spin Magnus force

Thermal gradient-induced rotation drift of Skyrmions not detectable with neutrons! (But with TEM! Tokura et al.) use thermal gradient to generate effective forces acting on macroscopic domains thermal gradient gradient in M gradient in spin currents inhomogeneous Magnus/drag forces effective global rotational torque

Thermal gradient-induced rotation project LLG equation onto rotational mode equation of motion for rotation angle Φ tiny restoring torque due to ionic crystal lattice 6 th order in spin-orbit χ sin(6φ) =κ t φ + T torque due to thermal gradient double-transfer of angular momentum first: electron spin magnetization second: magnetization ionic lattice depending on domain size and applied current: finite or free rotation (Φmax = 15 ) with size of domain: A κ = A 2π αd T = A 4π 4π M T T (v s v d )+ (MD) T ˆB( T (βv s αv d )) + T pinning

Manipulating Skyrmions with current rotation of the six-fold scattering pattern current j = +3 10 6 A/m 2 Jonietz, Mühlbauer, Pfleiderer, Neubauer, Münzer, Bauer, Adams, Georgii, Böni, Duine, Everschor, Garst, Rosch, Science (2010)

Manipulating Skyrmions with current rotation of the six-fold scattering pattern current j = 3 10 6 A/m 2 Jonietz, Mühlbauer, Pfleiderer, Neubauer, Münzer, Bauer, Adams, Georgii, Böni, Duine, Everschor, Garst, Rosch, Science (2010)

Thermal gradients rotation proportional to thermal gradient (1K/mm) parallel to applied current hot cold cold hot

Ultra-low threshold currents rotation angle of the scattering pattern no rotation as long as domain is pinned finite rotation beyond the depinning transition maximal rotation angle 15 free rotation for larger currents some domains continuously rotate (comet tails) 15 threshold current j c 10 6 A/m 2 Jonietz, Mühlbauer, Pfleiderer, Neubauer, Münzer, Bauer, Adams, Georgii, Böni, Duine, Everschor, Garst, Rosch, Science (2010)

Emergent electrodynamics in Skyrmion crystals

Adiabatic approximation electrons adjust their spin adiabatically to the magnetic texture Schrödinger equation for spinor i t Ψ(r, t) = 2 2m λσ M(r, t) Ψ(r, t) Schrödinger equation for scalar i t φ(r, t) = q e V e + ( i q ea e ) 2 2m φ(r, t) emergent/synthetic electrodynamic fields due to geometric Berry phase E e i = i V e t A e i = ˆM( i ˆM t ˆM) orbital magnetic field = B e i =( A e ) i = 1 2 ijk ˆM( j ˆM k ˆM) winding number counts Skyrmions! Volovik (1987), Bruno et al. (2004), Onoda et al. (2004), Zhang&Zhang (2009),...

Topological Hall effect emergent orbital magnetic field contributes to Hall effect background: anomalous Hall effect (due to Berry-phase in k-space) phase with Skyrmion lattice: additional, topological Hall signal (due to Berry-phase in real space) A. Neubauer et al. PRL 102, 186602 (2009) see also M. Lee et al. PRL 102, 186601 (2009) topological Hall signal directly measures Skyrmion density (one flux quantum per magnetic unit cell=2.5t orbital magnetic field)

conclusions: skyrmion density in chiral magnets spin Magnus force emergent electrodynamics Hall effect topological and Skyrmion-flow spin-transfer torque effects in bulk materials with small threshold current densities Science 330, 1648 (2010), PRB 84, 064401, (2011), Nature Physics submitted