Puerta de Rebatir M-Tres (Lateral), con Poliamida de 25

Similar documents
Ventana y Puerta Corrediza M-Tres (Encuentro central), con Poliamida de 15 - Mediterránea RPT

Cálculo del coeficiente de transmisión térmica (Uf) Ventana y Puerta Corrediza M-Cinco (Lateral) Mediterránea RPT

Paño Fijo M-Tres, con Poliamida de 15 Mediterránea RPT

Travesaño para Paño fijo y Puerta de Rebartir, con poliamida de 25

SIMULATION OF FRAME CAVITY HEAT TRANSFER USING BISCO v10w

Calculating the heat transfer coefficient of frame profiles with internal cavities

Customer: Ashton Industrial Sales Ltd. South Road, Harlow Essex CM20 2AR UNITED KINGDOM. Project/Customer: Profilex HM spacer

of PASSIVE Europa 92 door with 44mm & 48mm glazing for Zyle Fenster UAB J. Jasinskio 16a LT Lithuania

ISO INTERNATIONAL STANDARD

THERMAL SIMULATION REPORT. TCL2013-Origin-01 Prepared For:

of PASSIVE Europa 92 door with 44mm & 48mm glazing for Zyle Fenster UAB J. Jasinskio 16a LT Lithuania

Zeroth Law of Thermodynamics

ISO INTERNATIONAL STANDARD. Thermal performance of windows, doors and shutters Calculation of thermal transmittance Part 1: Simplified method

TREES Training for Renovated Energy Efficient Social housing

ISO INTERNATIONAL STANDARD. Thermal bridges in building construction Linear thermal transmittance Simplified methods and default values

TRANSPARENT INNOVATIVE MATERIALS: ENERGETIC AND LIGHTING PERFORMANCES EVALUATION

METHOD OF IN-SITU MEASUREMENT OF THERMAL INSULATION PERFORMANCE OF BUILDING ELEMENTS USING INFRARED CAMERA

Warm surfaces warm edges Insulated glass with thermally improved edge seal

Special pieces. Piezas especiales. Nanofantasy brown natural mosaico 5x5 (29,75 x 29,75 cm - 11,71 x 11,71 ) G-1708

45º CONGRESO ESPAÑOL DE ACÚSTICA 8º CONGRESO IBÉRICO DE ACÚSTICA EUROPEAN SYMPOSIUM ON SMART CITIES AND ENVIRONMENTAL ACOUSTICS

5. AN INTRODUCTION TO BUILDING PHYSICS

Determination of installed thermal resistance into a roof of TRISO-SUPER 12 BOOST R

Determining of Thermal Conductivity Coefficient of Pressed Straw (Name of test)

NFRC THERMAL PERFORMANCE TEST REPORT. Rendered to: C.R. LAURENCE CO., INC.

THERMAL ACTIONS. Milan Holický and Jana Marková. Czech Technical University in Prague, Czech Republic

CFD-SIMULATIONS OF TRANSPARENT COATED AND GAS-FILLED FACADE PANELS

Declarations of equivalence of Verosol sun screens. SilverScreen and EnviroScreen

CELLAR. Heat losses to the ground from buildings. Version 2.0 November 17, 2000

THERMAL TRANSMITTANCE EVALUATION OF CONCRETE HOLLOW BLOCKS

The lumped heat capacity method applied to target heating

AIR-INS inc. 1320, boul. Lionel-Boulet, Varennes (Quebec) J3X 1P7 Tél. : (450) Fax : (450)

Heat Tracing Basics. By: Homi R. Mullan 1

SIMULATED THERMAL PERFORMANCE OF TRIPLE VACUUM GLAZING. Yueping Fang, Trevor J. Hyde, Neil Hewitt

Numerical analysis of the thermal behaviour of a photovoltaic panel coupled with phase change material

QIRT th International Conference on Quantitative InfraRed Thermography

a) Prepare a normal probability plot of the effects. Which effects seem active?

GRAVITOMAGNETISM AND ANGULAR MOMENTA OF BLACK-HOLES

Available online at ScienceDirect. Energy Procedia 78 (2015 )

THERMAL PERFORMANCE TEST REPORT

Vincent Barraud SOPREMA BASICS OF THERMAL INSULATION

Conduction Transfer Function vs Finite Difference: comparison in terms of accuracy, stability and computational time

MATE EXAMEN FINAL

Determination of thermal transmittance of window (test title)

Report TAG3-UA-1212-E07 Testing of the transmission and the g-value of a polycarbonate multiwall panel AKYVER 16/7 IR Control Grey

SHANGHAI MYLCH WINDOWS & DOORS THERMAL PERFORMANCE TEST REPORT

Clase 05: Mechanical Supports

Quality assurance for cookstoves testing centers: calculation of expanded uncertainty for WBT

Description of Benchmark Cases for Window and Shading Performance Calculation

Publ. No. T Rev. a326 ENGLISH (EN) March 6,

Heat Removal of a Protection Chip after Surge Pulse Tom Graf Hochschule Luzern T&A Technikumstrasse 21 CH-6048 Horw Switzerland

GALILEO GALILEI (GG) DRL/DRD: DEL-23/24/33/35

Parametric Design Optimization of a CMOS-MEMS Infrared Thermopile for Biomedical Applications

Experimental measurement and numerical simulation of the thermal performance of a double glazing system with an interstitial Venetian blind

Probabilistic Load Flow with Load Estimation Using Time Series Techniques and Neural Networks

SIMULATION TEST REPORT NCTL E0A0

THERMAL TRANSMITTANCE OF MULTI-LAYER GLAZING WITH ULTRATHIN INTERNAL PARTITIONS. Agnieszka A. Lechowska 1, Jacek A. Schnotale 1

Content. Thermal insulation

LOW E SATINÉ 5500 LOW E

CHAPTER 8: Thermal Analysis

CERTIFICADO DE CALIBRACIÓN Certificate of Calibration

Window frame thermal performance simulation. Suitable methods according to climate and technology

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

ISO 7730 INTERNATIONAL STANDARD

EXPERIMENTAL VERIFICATION OF THE EUROPEAN METHODOLOGY FOR TESTING NOISE BARRIERS IN SITU: SOUND REFLECTION

Quantification of structure born sound using scanning laser velocimetry and BEM radiation calculations

EN 10211:2007 validation of Therm 7.4. Therm 7.4 validation according to EN ISO 10211:2007

Electromagnetic transmittance in alternating material-metamaterial layered structures

NFRC THERMAL PERFORMANCE TEST REPORT. Rendered to: PARAMOUNT WINDOWS CORPORATION. SERIES/MODEL: 4000 TYPE: Fixed

Evidence of Performance Thermal transmittance

Meteorologia 1. Meteorologia 1

DECLARATION OF PERFORMANCE No. 37/X-PIR/OBO

Increased thermal induced climatic load in insulated glass units

Extensions to the Finite Element Technique for the Magneto-Thermal Analysis of Aged Oil Cooled-Insulated Power Transformers

1 / 17. TÜV Rheinland (Shanghai) Co., Ltd Solar/ Fuelcell Technologies. Test Report

CFD MODELLING AND ANALYTICAL CALCULATIONS OF THERMAL TRANSMITTANCE OF MULTI-LAYER GLAZING WITH ULTRATHIN INTERNAL GLASS PARTITIONS

WUFI Workshop NBI / SINTEF 2008 Radiation Effects On Exterior Surfaces

REVIEW OF REFLECTIVE INSULATION ESTIMATION METHODS James M Fricker 1 and David Yarbrough 2

CFD MODELLING OF CONVECTIVE HEAT TRANSFER FROM A WINDOW WITH ADJACENT VENETIAN BLINDS

NUMERICAL ANALYSIS OF HEAT STORAGE AND HEAT CONDUCTIVITY IN THE CONCRETE HOLLOW CORE DECK ELEMENT

Window energy rating systems

NFRC THERMAL PERFORMANCE TEST REPORT. Rendered to: NU VISTA WD, INC. SERIES/MODEL: Malibu 250 T TYPE: Fixed

MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects. Conduction Thermal system components

THERMAL SIMULATION OF A CONCENTRATOR PIPE COMPOSED WITH NORMAL RADIATION DISTRIBUTION

Application of G100/120 Thermal Imaging Camera in Energy Efficiency Measuring in Building Construction

Project: Underfloor and wall heating example

ERT 460 CONTROLLED ENVIRONMENT DESIGN II HEAT TRANSFER. En Mohd Khairul Rabani Bin Hashim

Solar Flat Plate Thermal Collector

Theory of signals and images I. Dr. Victor Castaneda

Department of Civil Engineer and Mining, University of Sonora, Hermosillo, Sonora 83000, México

USE OF EXTERNAL VERTICAL FINS IN PHASE CHANGE MATERIALS MODULES FOR DOMESTIC HOT WATER TANKS

ISO INTERNATIONAL STANDARD

Thermal bridges in building construction Linear thermal transmittance Simplified methods and default values

NFRC THERMAL PERFORMANCE TEST REPORT. Rendered to: NORTH EAST WINDOWS USA, INC.

Study on Thermal Load Calculation for Ceiling Radiant Cooling Panel System

A SIMPLE MODEL FOR THE DYNAMIC COMPUTATION OF BUILDING HEATING AND COOLING DEMAND. Kai Sirén AALTO UNIVERSITY

(point focus array) Introduction to Engineering Instructor: Dr. Khalil Sharif. NWACC EMPACTS Project

Computer Evaluation of Results by Room Thermal Stability Testing

3D UNSTEADY STATE ANALYSIS OF THERMAL PERFORMANCE OF DIFFERENTLY INSULATED FLOORS IN CONTACT WITH THE GROUND

Series 5.0 Serie 5.0 CLUTCH-BRAKES SERIES 5.0 FRENO-EMBRAGUES SERIE 5.0

Mathematical Modelling of Ceramic Block Heat Transfer Properties

Transcription:

Cálculo del coeficiente de transmisión térmica (Uf) Puerta de Rebatir M-Tres (Lateral), con Poliamida de 25 Cliente: Alcemar Cálculos realizados por Technoform BAUTEC Ibérica, s.l. Laia Cardona Tel: +34 93 238 64 38/ Fax: +34 93 415 40 37 Email: tb-es@technoform.es Fecha: 24.04.2006 Resultados Puerta de rebatir RPT M-3 mediante BISCO según norma EN ISO 10077-2:2003 Uf = 4,06 W/m 2 K Puerta de rebatir RPT M-3 mediante RADCON con Know-How TECHNOFORM Uf = 3,20 W/m2K En este informe se detemina el coeficiente de transmisión térmica (Uf) mediante dos métodos de cálculo diferentes: A) Aplicando la norma EN ISO 10077-2:2003, y usando el software BISCO de la empresa Physibel. 1

B) Aplicando un método própio, know-how de Technoform, dónde se usa el software RADCON - también propiedad de Physibel - y el valor final equivale aproximadamente al resultado en el test de cálculo de nuestra HOT-BOX (La diferencia es de un 5%) según norma ISO/FDIS 12567:2000. Contenido Dibujo sistema A) mediante BISCO según norma EN ISO 10077-2:2003 Input data BISCO Output data BISCO Cálculo del coeficiente de transmisión térmica (Uf) Isotermas Flujo de calor B) mediante RADCON con Know-How TECHNOFORM Input data RADCON Output data RADCON Cálculo del coeficiente de transmisión térmica (Uf) Dibujo sistema 2

A) mediante BISCO según norma EN ISO 10077-2:2003 Input data BISCO Col. Name Type CEN-rule Coupled lambda eps t h [W/mK] [-] [ C] [W/m²K] 8 aluminium MATERIAL 160.000 24 aluminium MATERIAL 160.000 28 insulation MATERIAL 0.040 44 polyamid reinf. MATERIAL 0.300 60 EPDM MATERIAL 0.250 119 temp. sensor 1 MATERIAL 160.000 135 temp. sensor 2 MATERIAL 160.000 151 temp. sensor 3 MATERIAL 160.000 167 temp. sensor 4 MATERIAL 160.000 170 exterior BC_SIMPL HE 0.0 25.00 174 interior (norma BC_SIMPL HI_NORML 20.0 7.70 182 interior (reduc BC_SIMPL HI_REDUC 20.0 5.00 214 cavity (CEN) EQUIMAT CEN_VF_I NO 0.132 215 cavity (CEN) EQUIMAT CEN_VF_I NO 0.049 216 cavity (CEN) EQUIMAT CEN_VF_I NO 0.066 217 cavity (CEN) EQUIMAT CEN_VF_I NO 0.115 218 cavity (CEN) EQUIMAT CEN_VF_I NO 0.175 219 cavity (CEN) EQUIMAT CEN_VF_I NO 0.044 220 cavity (CEN) EQUIMAT CEN_VF_I NO 0.071 221 cavity (CEN) EQUIMAT CEN_VF_I NO 0.110 3

222 cavity (CEN) EQUIMAT CEN_VF_I NO 0.112 240 cavity (CEN) EQUIMAT CEN_VF_E NO 0.087 241 cavity (CEN) EQUIMAT CEN_VF_E NO 0.093 242 cavity (CEN) EQUIMAT CEN_VF_E NO 0.098 243 cavity (CEN) EQUIMAT CEN_VF_E NO 0.086 246 cavity <8x8 mm2 MATERIAL 0.049 249 cavity <5x5 mm2 MATERIAL 0.040 250 cavity <4x4 mm2 MATERIAL 0.037 251 cavity <3x3 mm2 MATERIAL 0.034 252 cavity <2x2 mm2 MATERIAL 0.031 253 cavity <1x1 mm2 MATERIAL 0.028 Col. q ta hc qc tr C1 C2 C3 [W/m²] [ C] [W/m²K] [W/m] [ C] [-] [-] [-] 8 24 28 44 60 119 135 151 167 170 0 174 0 182 0 214 0.025 0.73 0.333333 215 0.025 0.73 0.333333 216 0.025 0.73 0.333333 217 0.025 0.73 0.333333 218 0.025 0.73 0.333333 219 0.025 0.73 0.333333 220 0.025 0.73 0.333333 221 0.025 0.73 0.333333 222 0.025 0.73 0.333333 240 0.025 0.73 0.333333 241 0.025 0.73 0.333333 242 0.025 0.73 0.333333 243 0.025 0.73 0.333333 246 249 250 251 252 253 Calculation parameters Contour approximation margin (triangulation) = 0 pixels Iteration cycles = 5 Recalculation of CEN values (before each iteration cycle) Maximum number of iterations (per iteration cycle) = 10000 Maximum temperature difference = 0.0001 C Max. heat flow divergence for total object = 0.001 % Max. heat flow divergence for any node = 1 % 4

Output data BISCO Col. Name Type tmin tmax ta flow in flow out [ C] [ C] [ C] [W/m] [W/m] 8 aluminium MATERIAL 2.59 11.46 24 aluminium MATERIAL 2.63 11.33 28 insulation MATERIAL 0.00 15.82 44 polyamid reinf. MATERIAL 2.70 11.02 60 EPDM MATERIAL 2.24 12.17 119 temp. sensor 1 MATERIAL 9.84 9.84 135 temp. sensor 2 MATERIAL 11.23 11.23 151 temp. sensor 3 MATERIAL 11.38 11.38 167 temp. sensor 4 MATERIAL 13.78 13.78 170 exterior BC_SIMPL 0.00 3.21 0.00 16.30 174 interior (norma BC_SIMPL 9.80 15.82 15.19 0.00 182 interior (reduc BC_SIMPL 11.45 14.99 1.11 0.00 214 cavity (CEN) EQUIMAT 2.73 9.79 215 cavity (CEN) EQUIMAT 2.63 2.73 216 cavity (CEN) EQUIMAT 2.72 9.61 217 cavity (CEN) EQUIMAT 9.60 9.86 218 cavity (CEN) EQUIMAT 2.60 11.25 219 cavity (CEN) EQUIMAT 3.05 3.28 220 cavity (CEN) EQUIMAT 3.26 11.00 221 cavity (CEN) EQUIMAT 10.95 11.33 222 cavity (CEN) EQUIMAT 3.16 11.95 240 cavity (CEN) EQUIMAT 1.97 3.30 241 cavity (CEN) EQUIMAT 1.55 2.73 242 cavity (CEN) EQUIMAT 9.78 11.59 243 cavity (CEN) EQUIMAT 9.80 11.64 246 cavity <8x8 mm2 MATERIAL 2.70 9.65 249 cavity <5x5 mm2 MATERIAL 5.12 11.36 250 cavity <4x4 mm2 MATERIAL 9.87 11.20 251 cavity <3x3 mm2 MATERIAL 3.10 9.26 252 cavity <2x2 mm2 MATERIAL 11.30 11.36 253 cavity <1x1 mm2 MATERIAL 2.58 11.58 5

Cálculo del coeficiente de transmisión térmica (Uf) THERMAL TRANSMITTANCE ACCORDING TO pren 10077-2 Theory The thermal transmittance of a frame according to PrEN 10077-2: U f = L 2D l U f p * l p and L 2 D = q l, tot θ with: U f : thermal transmittance of the window frame [W/m 2 K] Calculation U p : thermal transmittance of the flanking panel [W/m 2 K] l p : projected width of the flanking panel [m] l f : projected width of the window frame [m] L 2D : two-dimensional coupling coefficient [W/mK] q l,tot : total heat flow through the window frame and the flanking panel [W/m] θ : temperature difference between inside (θi) and outside (θe) [K] Item: input data: q l,tot = 16,30 W/m R se = 0,04 m 2 K/W θ e = 0,0 o C R si = 0,13 m 2 K/W θ i = 20,0 o C d i = 0,0180 m λ i = 0,035 W/m*K U p = l p = 1,461 W/m 2 K 0,190 m calculation results: L 2D = 0,82 W/mK l f = 0,1323 m U f = 4,06 W/m 2 K input data using the Physibel Software BISCO q l,tot : alphanumeric output BISKO heat losses per boundary condition θ : input data, surface boundary conditions: inside temperature minus outside temperature U p : calculation, using the following formula: U p 1 = + h e d i + λ i 1 h i 1 with: h e / h i ext./int. surface heat transfer coeff. [W/m 2 K] d i thickness of layer i [m] λ i thermal conductivity of layer i [W/mK] l p / l f : input data: dimensions of the item PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842 6

Isotermas 7

Flujo de calor 8

B) mediante RADCON con Know-How TECHNOFORM Input data RADCON Col. Name Type CEN-rule Coupled lambda eps t h [W/mK] [-] [ C] [W/m²K] 8 aluminium MATERIAL 160.000 0.90 24 aluminium epsil MATERIAL 160.000 0.30 28 insulation MATERIAL 0.035 0.90 44 polyamid reinf. MATERIAL 0.300 0.90 60 EPDM MATERIAL 0.250 0.90 100 interior 4 BC_SKY NIHIL 119 temp. sensor 1 MATERIAL 160.000 0.90 135 temp. sensor 2 MATERIAL 160.000 0.90 151 temp. sensor 3 MATERIAL 160.000 0.90 156 insulation far MATERIAL 0.035 0.90 167 temp. sensor 4 MATERIAL 160.000 0.90 170 exterior BC_SKY NIHIL 174 interior 1 BC_SKY NIHIL 182 interior 2 BC_SKY NIHIL 190 interior 3 BC_SKY NIHIL 214 cavity BC_FREE CEN_VF_I NO 215 cavity EQUIMAT CEN_VF_I NO 0.049 0.90 216 cavity EQUIMAT CEN_VF_I NO 0.066 0.90 217 cavity BC_FREE CEN_VF_I NO 218 cavity BC_FREE CEN_VF_I NO 219 cavity EQUIMAT CEN_VF_I NO 0.044 0.90 220 cavity EQUIMAT CEN_VF_I NO 0.072 0.90 221 cavity BC_FREE CEN_VF_I NO 222 cavity BC_FREE CEN_VF_I NO 240 cavity EQUIMAT CEN_VF_E NO 0.086 0.90 241 cavity EQUIMAT CEN_VF_E NO 0.093 0.90 242 cavity EQUIMAT CEN_VF_E NO 0.099 0.90 243 cavity EQUIMAT CEN_VF_E NO 0.086 0.90 246 cavity <8x8 mm2 MATERIAL 0.049 0.90 249 cavity <5x5 mm2 MATERIAL 0.040 0.90 250 cavity <4x4 mm2 MATERIAL 0.037 0.90 251 cavity <3x3 mm2 MATERIAL 0.034 0.90 252 cavity <2x2 mm2 MATERIAL 0.031 0.90 253 cavity <1x1 mm2 MATERIAL 0.028 0.90 Col. q ta hc qc tr C1 C2 C3 [W/m²] [ C] [W/m²K] [W/m] [ C] [-] [-] [-] 8 24 28 44 60 100 0 20.0 3.07 20.0 119 135 151 156 167 170 0 0.0 12.00 0.0 9

174 0 20.0 2.50 20.0 182 0 20.0 2.77 20.0 190 0 20.0 3.15 20.0 214 0 1.92 0 0.0246 0.58 0.25 215 0.0244 0.58 0.25 216 0.0246 0.58 0.25 217 0 1.64 0 0.025 0.58 0.25 218 0 2.04 0 0.0247 0.58 0.25 219 0.0244 0.58 0.25 220 0.0247 0.58 0.25 221 0 1.95 0 0.025 0.58 0.25 222 0 2.05 0 0.0247 0.58 0.25 240 0.0244 0.58 0.25 241 0.0244 0.58 0.25 242 0.025 0.58 0.25 243 0.025 0.58 0.25 246 249 250 251 252 253 Calculation parameters Contour approximation margin (triangulation) = 0 pixels Iteration cycles = 5 Nonlinear radiation Recalculation of CEN values (before each iteration cycle) Smallest accepted viewfactor = 0.001 Number of visibility rays between radiative surfaces = 100 Black radiation heat transfer coeff. (linear radiation) = 5.25 W/m²K Maximum number of iterations (per iteration cycle) = 10000 Maximum temperature difference = 0.0001 C Max. heat flow divergence for total object = 0.001 % Max. heat flow divergence for any node = 1 % 10

Output data RADCON Col. Name Type tmin tmax ta flow in flow out [ C] [ C] [ C] [W/m] [W/m] 8 aluminium MATERIAL 3.62 13.38 24 aluminium epsil MATERIAL 3.65 13.30 28 insulation MATERIAL 1.75 15.77 44 polyamid reinf. MATERIAL 3.72 13.08 60 EPDM MATERIAL 3.06 13.66 100 interior 4 BC_SKY 13.22 13.37 4.94 0.00 119 temp. sensor 1 MATERIAL 11.24 11.24 135 temp. sensor 2 MATERIAL 13.22 13.22 151 temp. sensor 3 MATERIAL 13.32 13.32 156 insulation far MATERIAL 0.20 16.27 167 temp. sensor 4 MATERIAL 15.03 15.03 170 exterior BC_SKY 0.20 3.81 0.01 13.85 174 interior 1 BC_SKY 15.77 16.27 4.92 0.00 182 interior 2 BC_SKY 13.37 15.77 1.10 0.00 190 interior 3 BC_SKY 11.20 13.48 2.88 0.00 214 cavity BC_FREE 3.71 11.19 8.73 0.54 0.54 215 cavity EQUIMAT 3.65 3.73 216 cavity EQUIMAT 3.72 11.04 217 cavity BC_FREE 11.03 11.25 11.14 0.01 0.01 218 cavity BC_FREE 3.62 13.22 8.77 1.57 1.57 219 cavity EQUIMAT 3.70 3.88 220 cavity EQUIMAT 3.85 13.06 221 cavity BC_FREE 13.03 13.30 13.16 0.02 0.02 222 cavity BC_FREE 3.80 13.53 10.72 1.19 1.19 240 cavity EQUIMAT 2.87 3.97 241 cavity EQUIMAT 2.49 3.71 242 cavity EQUIMAT 11.19 12.78 243 cavity EQUIMAT 11.19 13.48 246 cavity <8x8 mm2 MATERIAL 3.72 11.06 249 cavity <5x5 mm2 MATERIAL 6.77 13.31 250 cavity <4x4 mm2 MATERIAL 11.29 13.15 251 cavity <3x3 mm2 MATERIAL 3.75 10.68 252 cavity <2x2 mm2 MATERIAL 13.16 13.30 253 cavity <1x1 mm2 MATERIAL 3.32 13.45 11

Cálculo del coeficiente de transmisión térmica (Uf) THERMAL TRANSMITTANCE ACCORDING TO pren 10077-2 Theory The thermal transmittance of a frame according to PrEN 10077-2: U f = L 2D l U f p * l p and L 2 D = q l, tot θ with: U f : thermal transmittance of the window frame [W/m 2 K] Calculation U p : thermal transmittance of the flanking panel [W/m 2 K] l p : projected width of the flanking panel [m] l f : projected width of the window frame [m] L 2D : two-dimensional coupling coefficient [W/mK] q l,tot : total heat flow through the window frame and the flanking panel [W/m] θ : temperature difference between inside (θi) and outside (θe) [K] Item: input data: q l,tot = 13,85 W/m R se = 0,06 m 2 K/W θ e = 0,0 o C R si = 0,13 m 2 K/W θ i = 20,0 o C d i = 0,0180 m λ i = 0,035 W/m*K U p = l p = 1,420 W/m 2 K 0,190 m calculation results: L 2D = 0,69 W/mK l f = 0,1323 m U f = 3,20 W/m 2 K input data using the Physibel Software BISCO q l,tot : alphanumeric output BISKO heat losses per boundary condition θ : input data, surface boundary conditions: inside temperature minus outside temperature U p : calculation, using the following formula: U p 1 = + h e d i + λ i 1 h i 1 with: h e / h i ext./int. surface heat transfer coeff. [W/m 2 K] d i thickness of layer i [m] λ i thermal conductivity of layer i [W/mK] l p / l f : input data: dimensions of the item PHYSIBEL Heirweg 21 B-9990 Maldegem Belgium tel +32 50 711432 fax +32 50 717842 12