Output Stages and Power Amplifiers

Similar documents
Transfer Characteristic

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

College of Engineering Department of Electronics and Communication Engineering. Test 2

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

Copyright 2004 by Oxford University Press, Inc.

Lecture 10: Small Signal Device Parameters

ES 330 Electronics II Homework 04 (Fall 2017 Due Wednesday, September 27, 2017)

Week 9: Multivibrators, MOSFET Amplifiers

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Over-Temperature protection for IGBT modules

Week 11: Differential Amplifiers

55:041 Electronic Circuits

55:041 Electronic Circuits

ECE 2100 Circuit Analysis

1.4 Small-signal models of BJT

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Electrical Engineering Department Network Lab.

ECE 2100 Circuit Analysis

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

V V. This calculation is repeated now for each current I.

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

55:141 Advanced Circuit Techniques Two-Port Theory

System in Weibull Distribution

Chapter 10 Sinusoidal Steady-State Power Calculations

ELCT 503: Semiconductors. Fall 2014

DC Circuits. Crossing the emf in this direction +ΔV

Key component in Operational Amplifiers

Lecture 8: Small signal parameters and hybrid-π model Lecture 9, High Speed Devices 2016

MPSA13 MPSA14 CASE 29-02, STYLE 1 TO-92 (TO-226AA) DARLINGTON TRANSISTOR MAXIMUM RATINGS THERMAL CHARACTERISTICS ON CHARACTERISTICS) 1) NPN SILICON

Lecture 27 Bipolar Junction Transistors

FEEDBACK AMPLIFIERS. v i or v s v 0

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

Phan Nhu Quan, PhD Dec 02, 2017

Why working at higher frequencies?

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

ADDITIONAL SOLVED PROBLEMS FOR TEXT

55:141 Advanced Circuit Techniques Two-Port Theory

( ) = ( ) + ( 0) ) ( )

EE C245 ME C218 Introduction to MEMS Design

STUDY PACKAGE. Subject : PHYSICS Topic : SEMICONDUCTORS ELECTRONICS. Available Online :

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Physics Courseware Electronics

VI. Transistor Amplifiers

Graphical Analysis of a BJT Amplifier

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points)

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Energy Storage Elements: Capacitors and Inductors

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

ANALOG ELECTRONICS DR NORLAILI MOHD NOH

Flyback Converter in DCM

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS

Electrical Circuits II (ECE233b)

Uncertainty in measurements of power and energy on power networks

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors

Lecture 12 Circuits numériques (II)

Prof. Paolo Colantonio a.a

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Lecture 14: More MOS Circuits and the Differential Amplifier

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Common Base Configuration

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

Electrical Circuits 2.1 INTRODUCTION CHAPTER

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

ELE B7 Power Systems Engineering. Power Flow- Introduction

Lesson 16: Basic Control Modes

E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1

Solutions for Homework #9

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Design of Analog Integrated Circuits

CHAPTER II AC POWER CALCULATIONS

Surface Charge and Resistors

Introduction to Electronic circuits.

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

Frequency-Domain Analysis of Transmission Line Circuits (Part 1)

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

II. PASSIVE FILTERS. H(j ω) Pass. Stop

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = "J j. k i.

N- and P-Channel 20-V (D-S) MOSFET

Lecture 5: Operational Amplifiers and Op Amp Circuits

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SEMESTER / 2014

Temperature. Chapter Heat Engine

6.01: Introduction to EECS 1 Week 6 October 15, 2009

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

At point G V = = = = = = RB B B. IN RB f

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or

Physics 123. Exam #1. October 11, 2006

Transcription:

Output Stages and Power Aplfers Output stages wth a low output resstance can delver the output voltage to the load wthout loss of gan. arge sgnal aplfer are used to drve a CT, a loud speaker, a servootor, etc. power ap. = large sgnal ap Power ap.can delver large voltage or current or a large aount of power. Theral consderatons are portant for power ap. 3 - Electroncs(3), 03

arge-sgnal Aplfers C s the quescent collector current (DC sgnal). c s the nstantaneous varaton fro C. (Sall sgnal) c and c are the rs values of v c and c. s the peak of snusodal current swng. CC C ax C B B C 0 Q B B3 BB n n C 0 ax CC v c t 3 - Electroncs(3), 03

arge-sgnal Aplfers (Cont.) c c ax ax n n Assung perfect lnearty,.e. no nonlnear dstorton) Output power P c c ( c ax n )( 8 ax n ) 3-3 Electroncs(3), 03

Haronc Dstorton Nonlnear Dynac transfer characterstc s not a straght lne. Sall sgnal arge sgnal Both have nonlnearty probles. nd haronc dstorton nonlnear relatonshp between b and c s assued. 3-4 Electroncs(3), 03

Haronc Dstorton(Cont.) b c c C G b b G cost b G b cost G G b cost G B0 B cost B B C c C 0 where G & G are constant. cos t b G cos t B cost B b b cos t cos t a. DC level s changed. b. nd haronc dstorton s ntroduced. 3-5 Electroncs(3), 03

Haronc Dstorton (Cont.) B nd haronc dstorton D B nter-odulaton For cosω t cosω c contans,,,,, nd haronc dstorton Hgher order haronc dstorton =G +G +G + 3 c b b 3 b c c 0 3 3 D =, D 3 =, B B where D n represents the nth haronc dstorton HD n nter-odulaton = +B +B cos ωt+b cos ωt+b cos3 ωt+ B b b b B t 3-6 Electroncs(3), 03

3-7 Electroncs(3), 03 Total Haronc Dstorton(THD) Power delvered at the fundaental frequency s Total power output s B P... D D D THD P... D D... B B B P 4 3 3 3

Aplfer Classfcaton Class A Output ~ X nput X Class B Output ~ nput BE 3-8 Electroncs(3), 03

Aplfer Classfcaton (Cont.) Class AB Output BE ~ nput Class C Output BE ~ nput 3-9 Electroncs(3), 03

Power Converson Effcency portant under. lted source of power. (e.g. n a satellte). axu power-dsspatng consderaton. Converson effcency sgnal power delvered to load dc power suppled to output crcut Class A aplfer wth c and v c output v C c c η C snω t snω t CC c C 00% 50 CC C % 00% 3-0 Electroncs(3), 03

Power Converson Effcency (Cont.) Sall sgnal,.e.(. 0 ) are sall. statc power consupton CC C even no exctaton Maxu sgnal,.e. = C, =0.5 CC 5% Class A operaton s a poor choce for power aplfcaton. C 3 - Electroncs(3), 03

Class B OPAMP Class B Push-Pull Aplfer Q CC C Dynac transfer characterstc O ~ Q CC CC C 0 0 B B B B ω t B v ~ C Exctaton ω t 3 - Electroncs(3), 03

Class B Push-Pull Aplfer (Cont.) Effcency of Class B push-pull Output power DC power (suppled by CC ) dc P Effcency η For π π P o CC Po π 00% P 4 η CC Two transstors for push-pull CC ax 00% 78.5% No statc power consupton under zero exctaton π 4 00% 3-3 Electroncs(3), 03

Class B Push-Pull Aplfer (Cont.) Average power dsspated n the class B stages. CC P P P A (Two transstors push-pull) Dfferentatng Eq.(A) wth respect to and equatng the dervatve to zero gves the that results n axu P D D For π o CC π P CC D(ax) P π o,ax P D P D(ax) CC CC power output η 50% η 78.5% π CC /π CC CC 3-4 Electroncs(3), 03

Dstorton n the Class B Push-Pull Stage CC Q O Q Haronc dstorton CC For atched devces Q & Q and are dentcal except shfted n phase by 80 ( ω t) C C B B 0 B cos ω t B ( ω t π) 0 B cos ω t B cos ω t B cos3 ω t cos ω t B cos3 ω t (B cos ω t B cos3 ω t ) 3 3 3 3-5 Electroncs(3), 03

Dstorton n the Class B Push-Pull Stage (Cont.) Even-order haronc dstortons have been elnated. f the -s of Q &Q are not dentcal, then evenorder haronc dstortons are expected. Crossover dstorton Wll be dscussed later. 3-6 Electroncs(3), 03

Output Stages deal output stages Supply external load current ow output pedance arge output swng CC EE deally Coonly used copleentary etter follower Each transstor s on for only half the te. 3-7 Electroncs(3), 03

Crossover dstorton Output Stages (Cont.) + CC o Q Q o Q (cut off) CC - CE(sat) - BE(on) BE(on) Q (sat) Q (cut off) o t Q (sat) - CC + CE(sat) - CC 3-8 Electroncs(3), 03

Output Stages (Cont.) Elnaton of crossover dstorton CC O bas CC - BE - CE(sat) D Q - BE(ON) D O Q - CC CE(sat) CC 3-9 Electroncs(3), 03

Elnaton of Crossover Dstorton of 74-Type OPAMP Output stage CC CC Q 3A Q 4 Q 9 6 o 40k Q 8 7 o Q 0 Q 3 EE EE 3-0 Electroncs(3), 03

Elnaton of Crossover Dstorton of 74-Type OPAMP (Cont.) Crcut Dagra CC 5 Q Q 9 Q 8 Q 3B Q 3A Q 9 Q 5 Q 4 6 7 5 39k n Q Q Q3 4 Q n C C 30pF 0 40k Q 8 Q 3 Q 7 Q 0 7 Q 6 Q EE Q 0 5 4 5k Q 7 Q5 Q6 k 3 50k k Q 9 50k Q 7 8 00 Q 4 50k 3 - Electroncs(3), 03

Classcal CMOS Class AB Output Stage Q N and Q P are source followers Q and Q are dode-connected elnate crossover dstorton Quescent current Q D D GG GG BAS BAS slarfor assuek kn' k p GS n Q GSN ' N W GS tn ' W SG tp SG andq 0.5 k ' W k ' W n p 0.5 k ' W k ' W n p W k ' W k ' W k ' W p and n p SGP P, tn tn tp tp BAS Q n BAS v n Q p + DD 0.5 0.5 W n W 3 - Electroncs(3), 03 + GG v o Q - Q P - SS Q p Q N BAS

estrcted Output Swng of Classcal Class AB vo v ax DD O Oax where v slarly, v On v O ON where O OP BAS : : O DD SS of O Q BAS P O vgsn BAS tp tn v v ON : n. voltage across current source of Q when t s supplyng O N OP ax : n. voltage across the transstor supplyng v when snkng the ax. + DD BAS v Q + GG v o Q - Q P (not Q N - SS shown) One drawback of classcalcmos classab output the restrctedoutput swngrange stages 3-3 Electroncs(3), 03

CMOS Class AB Utlzng Coon-Sources Allowable range of v O voax DD vop von SS von output swng range s ncreased Hgh output resstance out n Negatve seres-shunt feedback reduce the out of the aplfer vo v f the loop gan s large out // v out p μ - + - μ + DD Q P DP DN Q N DD Q P Q N - SS v o v o - SS OUT 3-4 Electroncs(3), 03

out educton by Seres-Shunt Feedback v The top half crcut - + μ DD Q P outp v o of v the A crcut - + μ Q P v o the β crcut f + - + O - A of outp out gp ( rop // ), o A g outp // of outn o p // r op ( r op // r // op r op // gp // g p g n ) g g p of p g 3-5 Electroncs(3), 03 n

oltage Transfer Characterstc n the quescent state v 0 and vo 0 DP Q k p ' W O p DN Q kn' W O n assue Q and Q are atched.e. k Q p ' W k ' W P k p O n N n k DD - SGP - SS + GSN DD + SGP - Q P μ - + - 0 + - μ + + GSN - Q Q Q N - SS 0 3-6 Electroncs(3), 03

3-7 Electroncs(3), 03 O Q p Q O O Q O Q O O DN DP O O O Q DN O O Q O O O O O DP g g g v v v v v v v v v v v v k v v k 4 4 4 ) ( ) ( Gan error snce Gan error slarly, oltage Transfer Characterstc (cont.) When v s appled Q P Q N v o DD - SS - + μ - + μ DP DN + - SGP ( DD SGP ) +μ(v o -v ) + - GSN (- SS + GSN ) +μ(v o v ) v

Error aplfers gan µ larger µ Desgn Trade-offs saller gan error and out saller µ Q s ore nsenstve to the nput offset voltages of the error aplfers Quescent current Q larger Q saller crossover dstorton, gan error, and out saller Q less power dsspaton 3-8 Electroncs(3), 03

Theral Desgn Consderatons C power aplfer Capable of delverng large power to external load. Exaple : A 5-W audo aplfer 0k 6 M384 4 3 C 3 0.uF 8 C 5uF C 0.uF 500μF speaker 8 The axu possble power converson effcency s about 75% (Class B or AB).e. for every 3-W output, W s dsspated wthn the aplfer. 3-9 Electroncs(3), 03

Theral Desgn Consderatons (Cont.) P D T TT J(ax) rreversble falure occurs where T J(ax) s the axu operatng juncton teperature of seconductor devce. Theral resstance q JC (between juncton and case) T T ΔT P θ J C unt: P D :Watt JC D q: 0 C/Watt JC 3-30 Electroncs(3), 03

Dsspaton Deratng Curve Exaple : N567 power transstor Maxu allowable dsspaton P D(ax) = 40W Dsspaton deratng curve θ JC 00 5 40.5 0 C power deratng factor W P D,(ax),W 40 00 75 50 5 0 50 00 50 00 Case teperature T C θ 0 JC 0.8W Exaple 3-7 and 3-8 of textbook T J ΔT JC ΔT CS C ΔT SA T A Chp (juncton) case heat snk 3-3 Electroncs(3), 03

Dsspaton Deratng Curve (Cont.) J : seconductor devce juncton C : case S : heat snk A : abent P D q jc q cs T J T jc T C T cs T S T J P D (θ JC θ CS θ SA ) T A q SA T sa T A 3-3 Electroncs(3), 03

Power FET Exaple : DMOS (Double-dffused MOS) Asyetrc source and dran. S and D ay not be nterchanged Conventonal Currently popular Source Gate Source Gate Dran P n Substrate n Source P n n Body n + n + p n + n - p - -substrate Current flow Dran 3-33 Electroncs(3), 03

araton on Class AB Confguraton Use of nput etter followers Hgh nput resstance CC Q 3 Quescent current n Q 3 and Q 4 s equal to that n Q and Q, f = and 3 = 4 0 Q CC CC c Q 3 4 Q 4 O CC 3 and 4 are sall and are ncluded to guard aganst the possblty of theral runaway due to teperature dfferences between the nput and output stage transstor. 3-34 Electroncs(3), 03

Copound Devces Darlngton confguraton. ncrease current gan. educe base current drve 3. Equvalent BE(eq.) = BE 4. Can be used for both NPN and PNP transstors Copound PNP confguraton. Used to prove PNP confguraton. Q s usually a lateral PNP havng low β ( 5 0) E E E E C C B B Q B B β ~ β β B Q B β ~ β β Q C C C C BE BE Q E BE E 3-35 Electroncs(3), 03

BE Multpler v Crcut ( Applcaton Exaple on DC evel Shftng CC 3 4 C C Q 3 Q 4 v o v o A O O For g BE 4 O BE ( 3 g BE BE BE ( ( 3 4 O & 4 ) 3 4 3 4 ) ) ) g BE g ( 3 3 4 g 4 4 )( g, A 4 ) 3-36 Electroncs(3), 03

BE Multpler (Cont.) Elnaton of crossover dstorton usng BE ultpler equvalent 3-37 Electroncs(3), 03

Class AB utlzng a Darlngton NPN and a Copound Bas s obtabed usng a BE ultpler BE ultpler s requred to provde 3 BE CC Q Q Q 5 O Q 3 Q 4 CC 3-38 Electroncs(3), 03

Class AB utlzng a Darlngton NPN and a Copound (Cont.) Short-crcut protecton BE5 C5 B C CC Q Q 3 Q 5 Q 4 E O E Q CC 3-39 Electroncs(3), 03

Class AB utlzng a Darlngton NPN and a Copound (Cont.) Theral shutdown T, Z BE Q absorbs bas current of OPAMP C CC Q Z Q CC 3-40 Electroncs(3), 03