Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Similar documents
The Devices. Jan M. Rabaey

4.10 The CMOS Digital Logic Inverter

ECE 342 Electronic Circuits. 3. MOS Transistors

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

MOS Transistor Theory

ECE 546 Lecture 10 MOS Transistors

MOS SWITCHING CIRCUITS

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

MOS Transistor Theory

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

DC and Transient Responses (i.e. delay) (some comments on power too!)

Chapter 13 Small-Signal Modeling and Linear Amplification

ECE 497 JS Lecture - 12 Device Technologies

The Physical Structure (NMOS)

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Digital Electronics Part II - Circuits

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

MOSFET: Introduction

ECE 342 Solid State Devices & Circuits 4. CMOS

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

MOSFET and CMOS Gate. Copy Right by Wentai Liu

THE INVERTER. Inverter

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

6.012 Electronic Devices and Circuits

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

EEE 421 VLSI Circuits

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Lecture 4: CMOS Transistor Theory

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Lecture 12 Circuits numériques (II)

High-to-Low Propagation Delay t PHL

Lecture 12: MOSFET Devices

Digital Integrated Circuits

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

FIELD-EFFECT TRANSISTORS

MOS Transistor I-V Characteristics and Parasitics

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

6.012 Electronic Devices and Circuits

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

Digital Electronics Part II Electronics, Devices and Circuits

The Devices: MOS Transistors

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Lecture 5: DC & Transient Response

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

Device Models (PN Diode, MOSFET )

Lecture 3: CMOS Transistor Theory

Metal-oxide-semiconductor field effect transistors (2 lectures)

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

Lecture 6: DC & Transient Response

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Switching circuits: basics and switching speed

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Lecture 12: MOS Capacitors, transistors. Context

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

The CMOS Inverter: A First Glance

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 19 - p-n Junction (cont.) October 18, Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics

CMOS Inverter (static view)

EE105 - Fall 2005 Microelectronic Devices and Circuits

Homework Assignment 09

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

CMOS Logic Gates. University of Connecticut 181

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Chapter 4 Field-Effect Transistors

Lecture 5: CMOS Transistor Theory

Device Models (PN Diode, MOSFET )

Appendix 1: List of symbols

Lecture 5: DC & Transient Response

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Biasing the CE Amplifier

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE105 - Fall 2006 Microelectronic Devices and Circuits

Section 12: Intro to Devices

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Practice 3: Semiconductors

Homework Assignment 08

The Devices. Devices

EE5780 Advanced VLSI CAD

Lecture 04 Review of MOSFET

Charge-Storage Elements: Base-Charging Capacitance C b

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

EE 434 Lecture 33. Logic Design

Bipolar Junction Transistor (BJT) - Introduction

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Transcription:

Content- MOS Devices and Switching Circuits Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model A Cantoni 2009-2013 Digital Switching 1

Content- MOS Devices and Switching Circuits (Majority Carrier Devices) MOS SWITCHING CIRCUITS nmos Logic (Ratioed Logic) CMOS Logic Switching Times of CMOS Inverter CMOS Power Dissipation A Cantoni 2009-2012 Digital Switching 2

Device Switching Bipolar (Minority Carrier Devices) Review of Charge Control Model Saturated Inverter Switching Saturation Control Transistor Transistor Logic (TTL) Basics A Cantoni 2009-2012 Digital Switching 3

Metal-Insulator-Semiconductor-(MIS) metal insulator semiconductor ohmic contact V 4

Idealised MIS Vacuum Level E C Flat Band Model φ m φ n E f E Fermi Level E E C f E i E V E V Metal Insulator Semiconductor

Excess Local Charge n type p type POSITIVE mobile Increased concentration of mobile holes - E V bent closer to E F >inversion. Reduced concentration of mobile electrons-e C bentawayfrome F. Leaves positively ionised donors. > space charge. Increased concentration of mobile holes - E V bent closer to E F >accumulation. Reduced concentration of mobile electrons-e C bentawayfrome F Increased concentration of mobile Increased concentration of mobile NEGATIVE mobile electrons-e C bentclosertoe F > accumulation Reduced concentration of mobile holesbye V bentawayfrome F electrons-e C bentclosertoe F >inversion Reduced concentration of mobile holes E V bentawayfrome F. Leaves negatively ionised acceptors > space charge

Idealised MIS-External Bias ev E f + - -- --- E C E f E i E V + + + + + + + + ξ - - - - - - - - n Charge on metal V Metal Insulator V Semiconductor Mobile Electrons ρ( x) x Accumulation

Idealised MIS- Negative Bias on Metal- Depletion Charge on metal E f ev - - E C E E f i E V - - - - - ξ + + + + + p V Metal Insulator Semiconductor Surface Ionised Donors V ρ( x) x 8

Idealised MIS- Negative Bias on Metal- Inversion Charge on metal E f ev - +++ ++ ++ E C E E f i E V ------------- ξ + + + + + + + + + + + + p V Metal Insulator Semiconductor Surface Mobile Holes and Ionised Donors V ρ( x) x 9

MOS Transistor n + Oxide n + P Substrate BULK n + SOURCE GATE n + DRAIN W L Intel L ~ 45 nm (45 X 10-9 m) 10

MOS Transistor Symbols D D D G B G G N Channel S S S D D D G B G G P Channel S S S 11

MOSFET Region of Operation I DS Pinch Off Determine Region of Operation Check V = V V GS G S V GSN More positive relative to V T 0 1 2 3 4 5 V DS Check V = V V GD G D relative to V T 12

V > MOSFET n channel Enhancement Devices 0 Cut Off: TN VGSN < VTN VDSN 0 IDN = 0 I DSN and V GSN More positive Ohmic/Triode Region: VGSN > VTN VGDN > VTN VDSN < VGSN VTN 1 I = k V V V V 2 ( ) 2 DN N GSN TN DSN DSN 0 1 2 3 4 5 V DSN Saturation: VGSN > VTN VGDN < VTN 0 V V V GSN TN DSN V V V 0 DSN GSN TN kn IDN = ( VGSN VTN) 2 2 13

MOS Inverters VDD VDD VDD VDD VDD RD Pull Up D Pu Pu Pu Pull Down G B Pd Pd Pd S QPD Resistor requires large area and gives RC transient responses V OH <V DD -V TN H noise margin low Dissipates power when output Low No power dissipation when output High nmos A Cantoni 2008 Digital Switching Good size Compromise between noise margin and speed Dissipates power when output Low No power dissipation when output High CMOS Controlled pull up and pull down. Eliminates the compromise between speed and noise margin Has no power dissipation in steady state H and L 14

CMOS Inverter V I G G i DP i DN VCC S D D S T P v o T N V I V O V CC n + n + p + p + p- well n-substrate 15

CMOS Inverter Consider initially the case of perfectly matched complementary ideal p and n devicesinthecmosinverter& V CC >2V T V o STATIC CHARACTERISTIC T N OFF A T N SATURATED T P OHMIC W n Ln VTN = VTP = VT k = kn = k P = W p L V CC p u u e h D' V O = V i G S D T N SATURATED T P SATURATED T N OHMIC T P SATURATED v i i DP i DN G D D T P T N v o T P OFF S V DD BA Cantoni 2008Digital Switching V i 16

Unbuffered CMOS GATES The generic structure for unbuffered CMOS logic V CC Input vector (x, y, z, C) p-net N P n-net N N p-channel transistors Output f n-channel transistors Transmission function T P Transmission function T N T T P N = 1 Output = 1 = = 0 ( V ) CC T T P N = 0 = 0 not allowed: floating output. T T P N = 0 Output = 0 = = 1 ( GND) T T P N = 1 = 1 notallowed,currentfrom V DD toground. Complementary No Steady Current and Valid Output 17

Unbuffered CMOS GATES x V DD z y f f( x, y, z) ( ) ( ) T = f( x, y, z,..) = x+ y z= x y z = x y+ z N = x+ y z x y T (,,,..) z P = f x y z = x+ yz Network characteristics: n and p channel always paired Note the negated variables! 18

Buffered CMOS input vector (x, y, z, C) p-net N P n-net N N G G S D D V DD G G S D D S S 19

MOSFET Capacitances Operating Region C GB C GS C GD C OLS C OLD Cutoff X 0 0 X X Triode 0 X X X X Saturated 0 X 0 X X C Source Gate Drain OLS C GS C GD C OLD C SB CGB CDB Total gate capacitance C = C + C + C + C + C G GS GD GB OLS OLD 20

Inverter Switching Identify Region of Operation Identify Initial Conditions Assume a Region of Operation {cutoff, forward active, saturated} Identify Final Conditions Assuming Region of Operation Persist for all time Simplify equations Find Solution Consistent Circuit Solution Y N Use solution to Determine Time when New Region of Operation is entered or Final State reached 21

CMOS Switching G S V CC V V V, 0p t τ o CC T 1 V CC 0V t = 0 v i i DP i DN G D D S T P T N I O C v o The n channel FET is in the saturated region and the p channel is OFF V p V V, τ < t o CC T 1 The n channel FET is in the ohmic region and the p channel is OFF. 22

CMOS Switching V i V CC t V CC N Saturated V CC V T N Ohmic ID t=0 C V V V o CC T τ 1 ID V CC V pv V o CC T C 1 ( ) 2 ID = k VCC VT 2 1 I = k ( V V ) V V 2 2 D CC T o o 23

Power Dissipation V o V o T N OFF A T N SATURATED T P OHMIC D' T N SATURATED T P SATURATED D T N OHMIC T P SATURATED T P OFF V CC I D V T V ( V V ) CC 2 CC T 24

Power Dissipation V CC V V I T V T tr tf I PK P = V I AV SW CC AV SW = V I t f CC PK sw tsw = tr = tf 25

Power Dissipation Dynamic Power Consumption Charging and Discharging Capacitors 2 PC = CLV f Leaking currents through diodes and transistors P = V I S CC CC CC Total Power P = V I t f + C V f + V I 2 T CC PK sw L CC CC CC P C C V f V I 2 T = ( PD + L) CC + CC CC 26

Static BJT Device Modelling E B C COLLECTOR p+ isolation n+ p + p n-epitaxy n + p + BASE EMITTER n+ buried layer NPN p-substrate (c) NPN Schematic Symbol (a) NPN Cross-sectional view. B E n+ p n C (b) NPN Idealized transistor structure.

BJT Region of Operation Determine Region of Operation Check relative to V = V V BE B E V Juntction_ ON Check relative to V = V V BC B C V Juntction _ ON 28

BJT Regions of Operation I C ma 6 Saturated IB = 0.05mA 5 IB = 0.04mA 4 IB = 0.03mA 3 2 Forward Active I B = 0.02mA 10 1 IB = 0.01mA I B = 0 IB = 0.01mA 0.02 10 20 30 V CE Reverse Active 0.04 Cut-Off BV CEO

Charge Control Model (npn BJT) i i i C B E q F i B B qf τ F C BC 1 1 + τf τbf qf _ + + _ dq BC C i C _ q R + dt dq F + dt E i E _ dq R dt dq BE dt C BE qr + τ R τ qr τ R 1 1 qf dq BC 1 1 = qr + τf dt τr τbr qf dqf dqbe dqbc qr dqr = + + + + + τ dt dt dt τ dt BF 1 1 dqf dqbe qr = qf + + τf τbf dt dt τr BR BR dq dt R Minority Carrier Injection BE Space Charge Minority Carrier Injection BC 30

BJT Inverter Switching Identify Region of Operation Identify Initial Conditions Assume a Region of Operation {cutoff, forward active, saturated} Identify Final Conditions Assuming Region of Operation Persist for all time Simplify equations Find Solution Consistent Circuit Solution Y N Use solution to Determine Time when New Region of Operation is entered or Final State reached 31

BJT Inverter Switching v i V2 - V1 i ( ) C t t 1 t t 2 3 t 2 ib( t) Charge Storage Delay t S v BE( t ) t 2 CO CO FA SAT SAT FA CO 32

BJT Inverter Switching -Forward Active Region V CC C i C qf τ i B F C BC _ + dqbc dt + V 2 q F 1 1 + τf τbf qf + _ dq F dt + _ dq BE dt C BE Circuit simplification by appropriate approximations 33

BJT Inverter Switching -Forward Active Region V 2 v( t) i V CC R C i C V 1 v ( ) be t V 2 v i + R i i B V CE V 1 V 1 V CC VCE SAT βfib ON 0 t 1 ( t + t ) 2 1 v ( ) ce t VCC β I R F B ON C IC SAT i c (t) 34

Simulation of Clamp MBD101 1K 3V 1K 3V + v i 5K i B i D i C BC337 + v i 5K i B i C BC337 35

Schottky Transistor V CC V CC R C i Rc R C i Rc I (ON) i D i C I (ON) i C i B The diode limits v BC to 0.4 V maximum q R is negligible and the transistor is in the active region. Downside: V CE(SAT) = V BE(ON) - V D(ON) 0.3 to 0.4 V higher low level and hence lower margin. 36

Bipolar Logic -TTL Transistor-Transistor Logic (TTL) developed from earlier bipolar logic such as Resistor -Transistor logic (RTL) and Diode-Transistor Logic(DTL). V CC (5V) R 2 (1.6K) R c (130) R 1 (4K) Q 3 Q 2 Q 1 R 3 (1K) Q 4 A Standard TTL Inverter 37

E TTL- Input Diode Model B C TRANSISTOR There is a big difference between using two diodes and the transistor! V CC (5V) R 1 (4K) R 2 (1.6K) Q 2 Q 3 R c (130) R 3 (1K) Q 4 VI > VD + VBE 2VBE Vo LOW VI < VD + VBE 2VBE Vo HIGH 38

TTL The big difference between the equivalent diodecircuit and the transistor inputcircuit is the transistor base to collector current gain action when the input (emitter) is connected low R 1 (4K) R 2 (1.6K) R c (130) Q 3 V CC (5V) Q 4 will turn off rapidly due to the increase initscollectorcurrentasq 3 turnson. 3 Q 2 i B V CC V R I BE Q 1 R 3 (1K) Q 4 The 130 Ohm collector resistor on Q 3 limits the current glitch that flows from supply to ground i = βi i < 0 C B BQ2 Q1 in Forward Active! V 2V CE BE_ ON 39