Principles of Equilibrium Statistical Mechanics

Similar documents
Statistical Mechanics

Suggestions for Further Reading

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

PH4211 Statistical Mechanics Brian Cowan

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

1. Thermodynamics 1.1. A macroscopic view of matter

Statistical Mechanics

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

PHASE TRANSITIONS AND CRITICAL PHENOMENA

INDEX 481. Joule-Thomson process, 86, 433. Kosterlitz-Thouless transition, 467

Part II Statistical Physics

Topics for the Qualifying Examination

Table of Contents [ttc]

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

NPTEL

Syllabus and Topics Statistical Mechanics Thermal Physics II Spring 2009

The Oxford Solid State Basics

Teaching Statistical and Thermal Physics Using Computer Simulations

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

PHY 6500 Thermal and Statistical Physics - Fall 2017

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

AGuideto Monte Carlo Simulations in Statistical Physics

Syllabus and Topics Statistical Mechanics Spring 2011

424 Index. Eigenvalue in quantum mechanics, 174 eigenvector in quantum mechanics, 174 Einstein equation, 334, 342, 393

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

Physics 212: Statistical mechanics II Lecture XI

Thermodynamics and Statistical Physics WS 2018/19

INTRODUCTION TO MODERN THERMODYNAMICS

WORLD SCIENTIFIC (2014)

Elementary Lectures in Statistical Mechanics

Syllabus and Topics Statistical Mechanics Spring 2010

List of Comprehensive Exams Topics

PART I: PROBLEMS. Thermodynamics and Statistical Physics

Introduction to Statistical Physics

CH 240 Chemical Engineering Thermodynamics Spring 2007

FISES - Statistical Physics

Syllabus and Topics Thermal Physics I Fall 2007

NANO/MICROSCALE HEAT TRANSFER

Phenomenological Theories of Nucleation

01. Equilibrium Thermodynamics I: Introduction

Phase transitions and critical phenomena

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Basics of Statistical Mechanics

Molecular Driving Forces

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

EQUATION LANGEVIN. Physics, Chemistry and Electrical Engineering. World Scientific. With Applications to Stochastic Problems in. William T.

Making thermodynamic functions of nanosystems intensive.

TSTC Lectures: Theoretical & Computational Chemistry

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Statistical Mechanics

An Introduction to Computer Simulation Methods

Thermal and Statistical Physics Department Exam Last updated November 4, L π

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

Phys Midterm. March 17

Physics 7240: Advanced Statistical Mechanics Lecture 1: Introduction and Overview

Monte Carlo study of the Baxter-Wu model

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

1 The fundamental equation of equilibrium statistical mechanics. 3 General overview on the method of ensembles 10

Theoretical Statistical Physics

Magnetism in Condensed Matter

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Molecular Modeling of Matter

DEPARTMENT OF PHYSICS

Principles of Condensed matter physics

Index. B beats, 508 Bessel equation, 505 binomial coefficients, 45, 141, 153 binomial formula, 44 biorthogonal basis, 34

STATISTICAL PHYSICS. Statics, Dynamics and Renormalization. Leo P Kadanoff. Departments of Physics & Mathematics University of Chicago

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m.

STATISTICAL MECHANICS

Clusters and Percolation

3.320 Lecture 18 (4/12/05)

The Monte Carlo Method in Condensed Matter Physics

Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany

Spin Systems. Frustrated. \fa. 2nd Edition. H T Diep. World Scientific. University of Cergy-Pontoise, France. Editor HONG SINGAPORE KONG TAIPEI

In-class exercises. Day 1

Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles. Srikanth Sastry

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Quantum Integrability and Algebraic Geometry

5. Systems in contact with a thermal bath

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby

CONTENTS 1. In this course we will cover more foundational topics such as: These topics may be taught as an independent study sometime next year.

Definite Integral and the Gibbs Paradox

Contact Geometry of Mesoscopic Thermodynamics and Dynamics

1) K. Huang, Introduction to Statistical Physics, CRC Press, 2001.

Javier Junquera. Statistical mechanics

EQUILIBRIUM STATISTICAL PHYSICS

3. General properties of phase transitions and the Landau theory

Temperature and Pressure Controls

PHL556: STATISTICAL MECHANICS

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

INTRODUCTION TO THE STRUCTURE OF MATTER

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235.

Basics of Statistical Mechanics

FUNDAMENTALS OF POLARIZED LIGHT

Transcription:

Debashish Chowdhury, Dietrich Stauffer Principles of Equilibrium Statistical Mechanics WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto

Table of Contents Part I: THERMOSTATICS 1 1 BASIC PRINCIPLES OF THERMOSTATICS 5 1.1 Introduction. 5 1.2 Extensive and Intensive Variables 5 1.3 Entropy and Temperature 8 1.4 Concept of Equilibrium 9 1.5 Internal Energy and the First Law 10 1.6 "Processes" in Thermostatics; Cycles 11 1.7 Constraints and Walls 11 1.8 Fundamental Relation, Equations of State 12 1.9 Euler and Gibbs-Duhem Relations 18 1.10 Second Law of Thermostatics 20 1.11 Third Law of Thermostatics 22 1.12 Conditions for Fundamental Relations 24 1.13 Extremum Principles for Equilibrium 24 1.13.1 Entropy-maximum/Energy-minimum Principles... 24 1.13.2 Concept of a Reservoir 26 1.13.3 Why T is Called Temperature 27 1.13.4 Thermostatic Potentials and Equilibrium 28 1.14 Response Functions........................ 33 1.15 Thermostatic Relations 35 1.16 Second Law: Alternative Statements 38 1.17 Some Applications of Thermostatics 40 1.18 Chapter Summary 45 1.19 Historical Notes 46 1.19.1 First Law of Thermostatics 46 1.19.2 Second Law of Thermostatics 50 1.19.3 Third Law of Thermostatics 53 1.19.4 Gibbs and Modern Thermostatics 53 1.19.5 Duhem and Applications of Thermostatics 54 1.20 Problems 56 1.21 Supplementary Notes 57 5.1.1 Convexity and Concavity of Thermostatic Variables. 57 5.1.2 Mathematical Foundation of Thermostatics 57 5.1.3 Applications of Thermostatics 58

XVI 2 THERMOSTATICS OF PHASE TRANSITIONS 59 2.1 Introduction............................ 59 2.2 Phases and Components... 59 2.3 Phase Diagrams and Critical Point... 61 2.3.1 Fluids 61 2.3.2 Magnets 64 2.4 Stability of Phases 66 2.4.1 Intrinsic Stability of Homogeneous State 66 2.4.2 Mutual Stability of Coexisting Phases 68 2.5 Stable, Metastable and Unstable States 74 2.5.1 Van der Waals Gas 77 2.5.2 Curie-Weiss Magnet 80 2.6 Derivatives of Thermostatic Potentials 82 2.7 Classification of Phase Transitions 83 2.8 Critical Exponents 87 2.9 Scaling Relations... 90 2.10 Chapter Summary... 91 2.11 Historical Notes 92 2.11.1 Concept of Latent Heat 92 2.11.2 Critical Phenomena in Fluids 92 2.11.3 Critical Phenomena in Magnets 94 2.12 Problems 95 2.13 Supplementary Notes 96 S.2.1 Tricritical and Multicritical Phenomena 96 PART II BASIC PRINCIPLES OF STATISTICAL MECHANICS and Rules of Calculation 99 3 RULES OF CALCULATION 109 3.1 Introduction 109 3.2 Isolated Classical Systems 109 3.2.1 Boltzmann Hypothesis 109 3.2.2 Illustration with Ideal Classical Ising Magnet Ill 3.2.3 Illustration with Ideal Classical Monatomic Gas...112 3.2.4 Entropy of Mixing and Gibbs'Paradox 113 3.2.5 Equipartition of Energy 116

XVII 3.2.6 Concepts of Ensemble and Ergodicity......... 117 3.3 Closed Classical Systems 118 3.3.1 The Partition Function 119 3.3.2 Connection with Thermostatics 121 3.3.3 Illustration with Ideal Classical Ising Magnet... 125 3.3.4 Illustration with Ideal Classical Monatomic Gas... 125 3.3.5 Equipartition of Energy................. 127 3.4 Open Classical Systems 128 3.4.1 Grand Partition Function 128 3.4.2 Connection with Thermostatics 129 3.4.3 Illustration with Ideal Classical Monatomic Gas... 130 3.5 Unified Presentation of the Rules 131 3.5.1 Micro-canonical Ensemble 132 3.5.2 Canonical Ensemble 133 3.5.3 Grand-canonical Ensemble 133 3.6 Maximum Entropy Principle 133 3.6.1 Microcanonical Ensemble 134 3.6.2 Canonical Ensemble 134 3.6.3 Grand Canonical Ensemble............... 135 3.7 Illustration with Ideal Quantum Gases 136 3.7.1 Micro-Canonical Ensemble 136 3.7.2 Canonical Ensemble 144 3.7.3 Grand-Canonical Ensemble 147 3.8 Quantum Systems; Density Operator 147 3.8.1 Micro-Canonical Ensemble............... 148 3.8.2 Canonical Ensemble................... 150 3.9 Chapter Summary 152 3.10 Historical Notes 154 3.10.1 James Clerk Maxwell 155 3.10.2 Ludwig Boltzmann 156 3.10.3 Josiah Willard Gibbs 157 3.10.4 Maximum Entropy Principle 158 3.11 Problems 160 3.12 Supplementary Notes 167 5.3.1 Entropy Calculation from Trajectory 167 5.3.2 Entropy and Information 167 5.3.3 Wigner Function 169

XVIII 4 FLUCTUATIONS, CORRELATIONS AND RESPONSE 171 4.1 Introduction 171 4.2 Energy: Most Probable and Mean 172 4.3 Particle Number: Most Probable and Mean 172 4.4 Fluctuations............................ 173 4.4.1 Fluctuations in Energy.................. 174 4.4.2 Fluctuations in Volume 175 4.4.3 Fluctuations in Particle Number 176 4.4.4 Cross Correlation Between Fluctuations 176 4.4.5 Fluctuations in Entropy................. 178 4.5 Microstate Population Fluctuations............... 179 4.5.1 Ideal Bose Gas 179 4.5.2 Ideal Fermi Gas 179 4.5.3 Ideal Boltzmann Gas 180 4.6 Classical versus Quantum Fluctuations 180 4.7 Correlation Functions 181 4.8 Fluctuation-Response Theorem 182 4.8.1 Illustration with Ising Magnets 182 4.8.2 Illustration with Simple Fluids 184 4.9 Scattering Measures Correlation 184 4.10 Foundations of Laws of Thermostatics 187 4.11 Chapter Summary 188 4.12 Historical Notes 189 4.13 Problems 190 4.14 Supplementary Notes 192 S.4.1 Radial Distribution Functions for Fluids 192 5 STATISTICAL PHYSICS OF IDEAL CLASSICAL GASES 196 5.1 Introduction 196 5.2 Monatomic Gas; MB Distribution 196 5.3 Full Partition Function. 198 5.3.1 Monatomic Molecules 200 5.3.2 Diatomic Molecules 201 5.4 Chapter Summary 208 5.5 Historical Notes 208 5.6 Problems 210 5.7 Supplementary Notes 213 S.5.1 Kinetic Theory of Gases 213

XIX 6 STATISTICAL PHYSICS OF IDEAL QUANTUM GASES216 6.1 Introduction 216 6.2 Some General Results 216 6.2.1 Concept of Density of Levels 217 6.3 Ideal Fermi Gas at T = 0 219 6.3.1 Fermi Energy 220 6.3.2 Internal Energy 221 6.3.3 Pressure 221 6.4 Ideal Fermi Gas at T ф 0 222 6.4.1 Sommerfeld Expansion 222 6.4.2 Chemical Potential 225 6.4.3 Specific Heat 225 6.4.4 Magnetic Susceptibility 227 6.5 Fermi-Dirac and Bose-Einstein Integrals............ 230 6.6 Ideal Bose Gas: Bose-Einstein Condensation.......... 231 6.6.1 Number density and Chemical Potential 231 6.6.2 Internal energy and Specific Heat 236 6.6.3 Entropy 239 6.6.4 Isotherms on the PV diagram 240 6.7 Chapter Summary 243 6.8 Historical Notes 244 6.8.1 FD Statistics 244 6.8.2 BE Statistics and Discovery of BE Condensation... 245 6.9 Problems 247 6.10 Supplementary Notes 249 5.6.1 Quantum Gases in Astrophysics 249 5.6.2 Phonon Contribution to Specific Heat of Crystals... 249 PART III STATISTICAL MECHANICS OF INTERACTING SYSTEMS 253 7 INTERACTING SYSTEMS; THERMODYNAMIC LIMIT257 7.1 Introduction 257 7.2 Models of Fluids 258 7.2.1 Partition Function 261 7.3 Lattices 262

7.3.1 Bravais Lattices..................... 262 7.3.2 Bethe Lattice....................... 264 7.4 Spin Models on Lattices..................... 265 7.4.1 Classical Spin-1/2 Ising Model............. 266 7.4.2 Spin-1/2 Ising Model: Physical Realizations... 270 7.4.3 Generalization: From Spin-1/2 to Spin-1 Ising Model. 276 7.4.4 Generalization: From Ising to Vector Spins... 277 7.4.5 Generalization: Prom Ising to Potts Variables... 279 7.4.6 Quantum Spin Models 279 7.4.7 Classical Limit of Quantum Spin Models 280 7.4.8 Magnetic Physical Realizations of Spin Models....281 7.5 Restrictions on the Interactions 281 7.6 Zeroes of the Grand Partition Function 285 7.6.1 Yang-Lee Theorems and Their Consequences 286 7.7 Chapter Summary 291 7.8 Historical Notes 292 7.8.1 Spin Models and Their Physical Realizations 292 7.8.2 Thermodynamic Limit 294 7.8.3 Yang-Lee Theorem 295 7.9 Problems 296 7.10 Supplementary notes 299 5.7.1 Continuum Models of Fluids 299 5.7.2 Spin Models on Discrete Lattices. 299 5.7.3 Vertex Models 300 5.7.4 Generalization: From "Hard" Spins to "Soft" Spins.. 300 5.7.5 Spin Models with Quenched Disorder 303 5.7.6 Anisotropic Hamiltonians for Spin System 303 5.7.7 Thermodynamic Limit 304 5.7.8 Complex Temperature Plane: Zeroes of Partition Function 308 5.7.9 Quantum Phase Transitions and Critical Phenomena. 308 EXACT SOLUTION OF SOME INTERACTING SYSTEMS310 8.1 Introduction 310 8.2 Ising Model in d = 1: Partition Function 311 8.2.1 Open Chain in the Absence of External Field 311 8.2.2 Closed Chain: Transfer Matrix Approach 313 8.2.3 Zeroes of the Partition Function 317 8.3 Ising Model in d = 1: Thermostatics 321

XXI 8.3.1 Spontaneous Magnetization............... 321 8.3.2 Magnetic Susceptibility................. 321 8.3.3 Magnetic Specific Heat.................. 322 8.4 Ising Model in d = 1: Correlations 322 8.4.1 Open Chain in Zero Field 322 8.4.2 Closed Chain: Transfer Matrix Approach....... 324 8.5 Important Concepts in Phase Transitions........... 326 8.5.1 Order Parameter 326 8.5.2 Peierls-Griffiths Argument 327 8.5.3 Phase Transitions: A "Mathematical Mechanism".. 328 8.5.4 Lower Critical Dimension 329 8.6 Critical Exponents. 329 8.7 Exact Solution of Fluid Models in d = 1............ 330 8.7.1 Tonks Gas 330 8.7.2 Takahashi Gas 333 8.8 Chapter Summary 334 8.9 Historical Notes 335 8.9.1 From Ising to Peierls 335 8.9.2 From Kramers to Onsager 335 8.9.3 One-dimensional Models of Fluids 337 8.10 Problems 338 8.11 Supplementary Notes 340 5.8.1 Peierls-Griffiths Arguments 340 5.8.2 Duality and Star-Triangle Transformations; Exact T c 's 340 5.8.3 Relevance of the Range of the Interaction 341 5.8.4 Exact Solution of the Two-dimensional Ising Model.341 5.8.5 Exact Solution of the n-vector Model......... 343 5.8.6 Exact Solution of the Spherical Model in d-dimension 343 9 COMPUTER SIMULATION METHODS 347 9.1 Introduction 347 9.2 Monte Carlo Simulation 350 9.2.1 Random Sampling Illustrated: Random Walk 351 9.2.2 Importance Sampling Illustrated: Ising Model 353 9.2.3 Fluctuations 361 9.2.4 Equilibration Time and Correlation Time 361 9.2.5 MC Simulation in Micro-canonical Ensemble 362 9.2.6 MC Simulation of Fluids 363 9.3 Molecular Dynamics 364

XXII 9.3.1 Constant-Energy Molecular Dynamics 364 9.3.2 Constant Temperature/Constant Pressure MD... 368 9.4 Non-Self-Averaging Quantities................. 369 9.5 Chapter Summary........................ 370 9.6 Historical Notes.......................... 370 9.6.1 MD approach....................... 370 9.6.2 MC approach 371 9.7 Problems 373 9.8 Supplementary Notes 374 5.9.1 Random Numbers and Random-Number Generators. 374 5.9.2 Multi-Spin Coding.................... 374 5.9.3 MC Simulation: Tricks of the Trade 375 5.9.4 MD Simulation: Tricks of the Trade 376 5.9.5 Langevin Dynamics Simulation 376 5.9.6 Vector- and Parallel Processors; Special Computers.. 376 5.9.7 Q2R update rules. 377 10 MEAN-FIELD THEORY I: Van der Waals-Weiss Formulation 379 10.1 Introduction 379 10.2 MFA for the d-dimensional Ising Model 379 10.2.1 A Pedestrian's Approach 380 10.2.2 An Alternative Variational Approach 381 10.2.3 Ordering Temperature 383 10.2.4 Thermostatic Properties 385 10.2.5 Correlation Function 388 10.2.6 Critical Exponents 391 10.3 MFA for the d-dimensional Fluid 392 10.3.1 The Equation of State 392 10.3.2 Critical Point 394 10.3.3 The Law of Corresponding States 396 10.3.4 Critical Exponents 396 10.4 Comparison of Magnets and Fluids 398 10.5 Validity and Accuracy of MFA 400 10.6 Chapter Summary. 403 10.7 Historical Notes 405 10.7.1 Weiss and MFT of Magnets 405 10.7.2 Van der Waals and MFT of Fluids 406 10.7.3 Inadequacies of MFT 408

XXIII 10.8 Problems............................. 410 10.9 Supplementary notes 413 5.10.1 Order-disorder Transition in Binary Alloys 413 5.10.2 Bethe-Peierls-Weiss (BPW) Approximation 413 5.10.3 Correlation Function of Fluids in the MFA 417 5.10.4 Mean-field Theory of Polymers 417 11 MEAN-FIELD THEORY II: Exact Solution in Infinite Dimension 418 11.1 Introduction 418 11.2 Infinite-Range Ising Model 418 11.2.1 First Approach: Largest Term Method 419 11.2.2 Second Approach: Method of Steepest Descent... 422 11.3 Infinite-Range Classical Gas 425 11.4 Chapter Summary........................ 426 11.5 Historical Notes 427 11.6 Problems 428 11.7 Supplementary Notes 429 5.11.1 Classical n-vector Models with Long-range Interactions429 5.11.2 Potts Model with Infinite-range Interactions 429 5.11.3 Ising Model on a Bethe Lattice 430 5.11.4 Classical Fluids in Infinite Dimension 431 12 MEAN-FIELD THEORY III: Landau Formulation 432 12.1 Introduction 432 12.2 Second Order Phase Transitions 433 12.2.1 Critical Exponents in Landau Theory 435 12.3 First Order Phase Transitions 437 12.3.1 Field-driven Transition 438 12.3.2 T-driven Transition; Asymmetric Case 439 12.3.3 T-driven Transition; Symmetric Case 441 12.4 Landau-Ginzburg Theory 443 12.5 Two-Point Correlation Function 448 12.5.1 Fourier Transform Method 449 12.5.2 Method of Solving Differential Equation 451 12.6 Ginzburg Criterion 453 12.7 Chapter Summary 455 12.8 Historical Notes 456 12.9 Problems 458

XXIV 12.10Supplementary notes 459 5.12.1 Landau theory for Tricritical Points 459 5.12.2 Gaussian Fluctuations and Ginzburg Criterion... 464 5.12.3 "Derivation" of Landau-Ginzburg Effective Hamiltonian466 13 BEYOND MEAN-FIELD APPROXIMATION: Scaling and Renormalization Group 470 13.1 Introduction 470 13.2 Scaling and Universality 470 13.2.1 Scaling Hypothesis 472 13.2.2 Scaling Theory: a General Formulation........ 474 13.2.3 Concept of Universality and Universality Classes... 477 13.2.4 Heuristic Justification of Scaling............ 478 13.3 Renormalization, Fixed Points and RG Flow 479 13.4 Chapter Summary 483 13.5 Historical Notes 484 13.6 Problems 485 13.7 Supplementary Notes 486 S.13.1 Renormalization Group Treatment of Percolation... 486 Mathematical Appendix 489 A.l Introduction 489 A.2 Some Useful Integrals 489 A.3 Exact Differentials 489 A.4 Homogeneous Functions 489 A.4.1 Homogeneous Function of a Single Variable 489 A.4.2 Homogeneous Function of Arbitrary Number of Variables 490 A.4.3 Generalized Homogeneous Function 490 A.5 Convex and Concave Functions 490 A.5.1 Definitions 490 A.5.2 Geometrical Interpretation 491 A.6 Legendre Transformation 492 A.7 Volume of A d-dimensional Sphere 494 A.8 Saddle point or Steepest-descent method 496 A.9 Functional derivatives 496 A.10 Stirling Formula 498 A. 11 Perron-Frobenius Theorem 498 A. 12 Probability and Statistics 499 A.12.1 Uniform Distribution 500

XXV A. 12.2 Binomial Distribution 500 A. 12.3 From Binomial to Gaussian Distribution 502 A.12.4 From Binomial to Poisson Distribution... 503 A.13 Problems............................. 506 References 508