MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

Similar documents
Objective Mathematics

1997 AP Calculus AB: Section I, Part A

MATHEMATICS (B) 2 log (D) ( 1) = where z =

2008 AP Calculus BC Multiple Choice Exam

are given in the table below. t (hours)

1973 AP Calculus AB: Section I

1997 AP Calculus AB: Section I, Part A

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

1 1 1 p q p q. 2ln x x. in simplest form. in simplest form in terms of x and h.

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

Things I Should Know Before I Get to Calculus Class

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd

EXERCISE - 01 CHECK YOUR GRASP

ENJOY MATHEMATICS WITH SUHAAG SIR

as a derivative. 7. [3.3] On Earth, you can easily shoot a paper clip straight up into the air with a rubber band. In t sec

(HELD ON 21st MAY SUNDAY 2017) MATHEMATICS CODE - 1 [PAPER-1]

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

Differentiation of Exponential Functions

Math 34A. Final Review

Calculus II (MAC )

DIFFERENTIAL EQUATION

Answers & Solutions. for MHT CET-2018 Paper-I (Mathematics) Instruction for Candidates

(B) a + (D) (A) A.P. (B) G.P. (C) H.P. (D) none of these. (A) A.P. (B) G.P. (C) H.P. (D) none of these

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Mock Exam 2 Section A

Combinatorial Networks Week 1, March 11-12

KCET 2016 TEST PAPER WITH ANSWER KEY (HELD ON WEDNESDAY 4 th MAY, 2016)

4. (5a + b) 7 & x 1 = (3x 1)log 10 4 = log (M1) [4] d = 3 [4] T 2 = 5 + = 16 or or 16.

Mathematics 1110H Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018 Solutions to the Actual Final Examination

A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x "±# ( ).

4 x 4, and. where x is Town Square

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

Section 11.6: Directional Derivatives and the Gradient Vector

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

JOHNSON COUNTY COMMUNITY COLLEGE Calculus I (MATH 241) Final Review Fall 2016

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d

First derivative analysis

EXERCISE - 01 CHECK YOUR GRASP

MSLC Math 151 WI09 Exam 2 Review Solutions

Calculus concepts derivatives

NARAYANA I I T / P M T A C A D E M Y. C o m m o n P r a c t i c e T e s t 1 6 XII STD BATCHES [CF] Date: PHYSIS HEMISTRY MTHEMTIS

METHOD OF DIFFERENTIATION

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Southern Taiwan University

Thomas Whitham Sixth Form

10. Limits involving infinity

AP Calculus BC AP Exam Problems Chapters 1 3

AP Calculus Multiple-Choice Question Collection

Text: WMM, Chapter 5. Sections , ,

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

Thomas Whitham Sixth Form

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

y cos x = cos xdx = sin x + c y = tan x + c sec x But, y = 1 when x = 0 giving c = 1. y = tan x + sec x (A1) (C4) OR y cos x = sin x + 1 [8]

cycle that does not cross any edges (including its own), then it has at least

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

TEMASEK JUNIOR COLLEGE, SINGAPORE. JC 2 Preliminary Examination 2017

Hyperbolic Functions Mixed Exercise 6

Prelim Examination 2011 / 2012 (Assessing Units 1 & 2) MATHEMATICS. Advanced Higher Grade. Time allowed - 2 hours

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)


Exercise 1. Sketch the graph of the following function. (x 2

EXST Regression Techniques Page 1

Functions of Two Random Variables

AP Calculus Multiple-Choice Question Collection connect to college success

For more important questions visit :

AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES

MATH 1080 Test 2-SOLUTIONS Spring

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

Higher order derivatives

Chapter 3 Exponential and Logarithmic Functions. Section a. In the exponential decay model A. Check Point Exercises

Calculus II Solutions review final problems

7' The growth of yeast, a microscopic fungus used to make bread, in a test tube can be

The Matrix Exponential

Homework #3. 1 x. dx. It therefore follows that a sum of the

The Matrix Exponential

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Basic Polyhedral theory

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Review of Exponentials and Logarithms - Classwork

4037 ADDITIONAL MATHEMATICS

Calculus Revision A2 Level

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

Differential Equations

ANALYSIS IN THE FREQUENCY DOMAIN

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Where k is either given or determined from the data and c is an arbitrary constant.

Instructions for Section 1

a 1and x is any real number.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

1 Minimum Cut Problem

Gradebook & Midterm & Office Hours

3D-COORDINATE GEOMETRY

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

CHAPTER 24 HYPERBOLIC FUNCTIONS

UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART B. 3) Form the partial differential equation by eliminating the arbitrary functions

Week 3: Connected Subgraphs

ECE 2210 / 00 Phasor Examples

FILL THE ANSWER HERE

Transcription:

EXERCISE - MAXIMA-MINIMA CHECK YOUR GRASP. f() 5 () 75 f'() 5. () 75 75.() 7. 5 + 5. () 7 {} 5 () 7 ( ) 5. f() 9a + a +, a > f'() 6 8a + a 6( a + a ) 6( a) ( a) p a, q a a a + + a a a (rjctd) or a a 6. f'() ( +. + 6. +...+. 98 } + 7. f() + 6 + a + b f'() g() + + a f''() 6 + ( + ) f''() > f"() is incrasing f' () at actl on point. Th givn function has actl on trmum.. f() { + cos} sin sin sin f'() cos cos cos cos ( cos )(cos ) + / f 8 8 f() f() minimum valu. Lt th lin b () + ( ) + + maimum valu Sum of intrcpt l + +, > + + 5. A. + + + 5 9 qualit holds for Rquird lin is + O n P + 6 (,/) n A' at ( n) A" A" < at maima A ma 6. a + b ' a + b '' 6a + b for point of inflction '' b a a + b...(i) (as ) point satisf th curv also, so a + b...(ii) from (i) & (ii) 9 a, b. f() ( + ) + f'() 6 6( + ) + D > 6( + ).. > ( ) > so rquird st is option (A,C,D)

EXERCISE -. f() p + (p ) + f'() { p + (p) (p+)} f'() { (p )} { (p +)} < p < and < p + < p (, ). f'() (6 ) ( )( + ) + + / ½ f sin f( + ) f 6 + 9 BRAIN TEASERS f() 9 / ½ f(), Min {f(t) : t } ; f,. Th solution st of th inqualit < < < 5 6 f() + a f'() a 5. f() (a ) (a + ) a + If a > < < a / a/ + If a < < a < a / a/ f() 8. f() t dt t dt u du (Put t u) f() f() 'f' is odd function. Chck othr options., sin sin f'() cos ( sin ) sin ( sin )( sin ) cos sin ( sin ) +sin /. a 9 P C sin sin sin Q s sin + sin sin sin r s sin Maimiz 'r'.. Lt 'a' b th sid of bas. R a a. cos volum bas ara hight. cos sin f() {cos sin} f'() / sin {cos.(sin ) + cos } { tan }cos for ma. volum, tan altitud.sin R cos

EXERCISE - Match th Column :. a + b + c Points A, B and D lis on th curv. a b + c a b + c a + b + c 7 Solving th quations w gt a b c. + + To maimiz ara of ABCD, w maimiz ara (BCD). A (,) B (,) / / To maimiz Ara(BCD) w hav to maimiz h (as shown in figur) for maimum h Slop of BD Slop of tangnt at C 7 ( + ) h C D(,7) + + 7 7 C, On th basis of this th coloumns can b matchd. Assrtion and Rason :. / 7+8 MISCELLANEOUS TYPE QUESTIONS St. II is fals. St. I f() has maima at () / & 7 is th closst natural numbr. a n has gratst valu for n 7. Comprhnsion # : Lt n f() Lt n f()...() for limit to ist Lt f() f() a 6 + a 5 + a Also f'() f'() f'() f'() 6a 5 + 5a + a (6a + 5a + a ) f'() a + a + a...() f'() 6a + 5a + a...() Considr q n. () f() n Lt n f() lim Lt a Putting a in () & () a + a 8 6a + 5a 8 on solving this w gt a 5, a 6 5 a a a From figur st. I is fals, bcaus f(h)< f() st. II is obviousl tru.. St. II :- f() f'() + () / ( ) ( ) () / ( ) ( ) f() 6 5 5 + f'() 5 + 8 ( + ) () () + + 5 On th abov basis th answrs can b givn.

EXERCISE - [A] CONCEPTUAL SUBJECTIVE EXERCISE. ( b ) f() ( ) ( + ) f'() {( ) ( + ) + ( ) ( + )} ( ) ( + ) { + + } ( ) ( + ) (5 + ) + 5. P R r S r Q 5 + cos r r cos 5 ( c ) f() n f'() + n + f"() > concav up Lt n, Lt n A(SRQ) ƒ() (cos).sin cos sin Now maimiz f() a a a b. f'() b b (R R (R + R )) f'() a + b f() a + b + c 6. 9. ½ ½ Givn 8 Printd ara (,) ¾ ¾ f() ( ) ( ) 8 Now maimiz th ara. B P APQ ~ ABC A 6 6 ( ) A ( ) Now maimiz th ara. Q C f() is maimum at 5 5 f ' 5a + b f() c, f() a + b + c a, 5 b, c 5 f(). a + b + a c...(i) d d a + b a d d d (a b) d b a slop of normal b a a b (, ) slop of lin joining origin & point (, ) minimum distanc is along normal. b a so a b or...(ii) from (i) & (ii) rquird points ar for ; for sinc ab< c c, (a b) (a b) & c c, (a b) (a b) c c, (a b) (a b) not possibl

EXERCISE - [B] BRAIN STORMING SUBJECTIVE EXERCISE. f'(). cos sin + + + + A (,) B(,) A(,-) ' To minimiz th primtr. AM + MB is to b minimizd. i.. A'M + MB is to b minimizd. [whr A' is imag of A in.] Obviousl A'M + MB is minimizd. whn A',M and B ar collinar. i.. M coincid with origin. M (, ) M. f() + 5 log (m) / + + f'() ( ) for f() to hav ral & distinct roots f().f() < Solving this w gt th rquird st of m. 9. t t a t t sin sin sin( ) a a t sin sin, t a sin ( + ) sin to maimiz primtr w maimiz t + t t + t f() a {sin() + sin(+)} sin a sin cos sin for maimum sin. f() sin + sin f'() sincos(sin + ) f''() 6sincos sin + cos f'() sin or cos or cos if sin sin < sin < < < sin < < othrwis thr is onl on critical point. If >, thn f''() > point of minima & f'() changs sign from positiv to ngativ for sin (point of maima). If < thn is a point of maima whil sin, {} is a point of minima. Thus for function has actl on maima & actl on minima. 6. Lt th vrtics L, M, N of th squar S b (, ), (, ) & (, ) rspctivl & th vrt O b origin. Lt th co-ordinat of vrtics A, B, C, D of th quadrilatral b (p, )(, q)(r, ) & (, s) Thn a ( p) + q N C M b ( q) + ( r) c ( s) + r D B d p + s O A Thus a + b + c + d ( p) + q + ( q) + ( r) + ( s) + r + p + s Lt f() + ( ) f'() ( ) f'() / f''() f() is minimum at / & ma. valu of f() occur at, / f() So a + b + c + d L

EXERCISE - 5 [A]. f() 9a + a + a > f'() 6 8a + a f"() 8a for maimum or minimum 6 8a + a a + a a or a maimum at a and minimum at a (a > ) givn) p a, q a p q a a a(a ) a. f() + f'() ± f"() minimum at. u a cos b sin + a sin b cos u a + b + (a cos b sin ) (a sin b cos ) u a + b + a cos sin a b cos a b sin b sin cos u a + b + a b ( sin cos ) a cos sin b cos sin a + b + a b (a b a b ) sin cos JEE-[MAIN] : PREVIOUS YEAR QUESTIONS 5. A triangular park (cos)(sin) sin ma. 6. Using A.M. G.M. p q p.q pq B (p + q) p + q + pq (p + q) A cosq sin 8. Graph of P() undr givn conditions. It is clar that P() has ma. at but not minimum at. 9. Point (t, t) is on th parabola Its distanc from t t d(t) d'(t) [t] C a + b + sin a b (a b ) t a + b + a b (a b ) sin u is maimum whn sin u is minimum whn sin u (ma.) u (min.) (a + b ) (a + b) a + b a b ab a + b ab (a b). f() f '() For maimum or minimum, f '() ± Now, f"() at, f"() > and f"() < So, thr ists a local minimum at. d"(t) > d(t) is min at t Its valu d d 8. f has a local minimum at lim f() f() k + k k Dirct ions : Qu st ions numbr 86 to 9 ar Assrtion - Rason tp qustions. Each of ths qustions contains two statmnts :

Statmnt (Assrtion) and Statmnt (Rason). Each of ths qustions also has four altrnativ choics, onl on of which is th corrct answr. You hav to slct th corrct choic.. f'() sin f'() & f'() ar. f '() + local maimum at and local minimum at. At ƒ() and for h and h (h ; h > ) tan > Function has a minima at Statmnt is tru. tan ; Now ƒ() ; sc -tan ; ƒ '() ; ƒ ' () Statmnt- is also tru.. V r Initiall r 5, r r + 5 r r 5m So, (5) 8() + C C 5 r 5t + 75...(ii) At tim t 9 min r 9 m from q. (i) dr 8 /9 dt (9) t9 (Ngativ sign shows dcrmnt in radii) 5. f'() + b + a f'() b + a...() f'() + b + a... () solv () & () a, b st : is tru f''() f"() < f"() < Local maimum at & 6. ƒ() + + k ƒ '() 6 + > ƒ is incrasing function (alwas iv) ƒ() has actl on ral root (as it is an odd dgr polnomial) Now dv dt (r ) dr dt 7 r dr dt dr dt 8 r...(i) r dr 8 dt At t, r 5 m r 8 t + C

EXERCISE - 5 [B] JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS. ƒ () ( + b ) + b + It is a quadratic prssion with coff. of + b >. ƒ () rprsnts an upward parabola whos min valu is D a b ( b ) m(b) ( b ) For rang of m(b) : b b Thus m(b) (, ], D bing th discriminant. m(b) b > also b + b 7. Lt p() a + b + c + d p() a + b c + d...(i) p() 6 a + b + c + d 6...(ii) p() has maima at p'() a b + c...(iii) p'() has min. at p"() 6a + b...(iv) Solving (i), (ii), (iii) and (iv) w gt From (iv) b a From (iii) a + 6a + c c 9a From (ii) a a 9a + d 6 da 6 From (i) a a + 9a + a 6 6a 6 a b, c 9, d 5 p() 9 + 5 p'() 6 9 ( + ) ( ) is a pt. of ma (givn) and is at pt. of min. [ ma and min occur altrnativl] pt. of local ma is (, ) and pt. of local min is (, ) And distanc btwn thm is [ ( )] ( ) 6 9. (a,b) g() g'() ƒ() g'() at + n ƒ (t) dt & g"() g"( + ln) and g"() g() has local ma. at + ln and local min. at.. (A) + ( ) + is ral ; so D > + 6, so minimum valu (B) (A + B)(A B) (A B)(A + B) AB BA as A is smmtric & B is skw smmtric (AB) t AB k, (C) a log log a log (D) a ( k ) Now ( k log ) k <. < so k is possibl sin cos k cos cos n ± n ± ± n k ( ± ) vn intgr 65

. f() f'() a a a( ) ( a ) a f"() (a ) and f"() a and f"() (a ) (a + ) f"() + ( a) f"(). As whn (, ), f'() < a( a) ( a ) so f() is dcrasing on (, ) at a f"() (a ) at.. g() g'() f '(t) t dt so local minima f '( ) a( ) ( a ) ( ) g'() > whn > g'() < whn < 5. f() 5 + 6 8 St A 9 6. Lt 9 + (5) () [, 5] Now, f'() 6 + 6 5 + 6, and f(), In th st A, f() is incrasing f() ma f(5).5 5.5 + 6.58 7 p p() Lt Lt p() a + b + c Lt p c p() a + b + in (, ) Now, p'() a + b + p'(), p'() a + b + a + b + a, b p() + p() 8 + 7. If [, ] thn Add to all sids h() g() f()... (i) whr, f() f'() ( ) f() has a maima at h() a h '() ( ) h() has a maima at c h() g() f() g() also has a maimum valu at a b c 8. f'()(9)() () ( ) R f() n(g()) R g() f() g'() f().f'() f'() incrasing dcrasing dcrasing incrasing incrasing + 9 + + local maimum at 9, hnc onl point. 9. f() + ( + ) ( ) f() + + + + < < < f has 5 points whr it attains ithr a local maimum or local minimum.

. Lt P'() k( ) ( ) k( + ) P() k c P() 6 k c 6 P()...() c...() b (i) and (ii) k P'() ( ) ( ) P'() 9. Whr P 8 + 5 + 8 + 5 & is constant. ƒ() (a + b) b a a, a b min (a, b) b, a b whr a, b + Local maima and minima at, & 5 8 Lt rmovd lngth from ach sids is Rmovd ara is 5 V (8 ) (5 ) V l 6 + dv 9 d Put 5 6 + + 6 + 5 ( ) (6 5) & 5 6 d v 9 9 d d v at d 5 d v at 6 d (rjctd)