Background Picture: Millennium Simulation (MPA); Spectrum-Roentgen-Gamma satellite (P. Predehl 2011)

Similar documents
Clustering studies of ROSAT/SDSS AGN through cross-correlation functions with SDSS Galaxies

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Mapping the Universe spectroscopic surveys for BAO measurements Meeting on fundamental cosmology, june 2016, Barcelona, Spain Johan Comparat

BAO errors from past / future surveys. Reid et al. 2015, arxiv:

From quasars to dark energy Adventures with the clustering of luminous red galaxies

Basic BAO methodology Pressure waves that propagate in the pre-recombination universe imprint a characteristic scale on

Baryon acoustic oscillations A standard ruler method to constrain dark energy

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD

Introduction to SDSS-IV and DESI

SDSS-IV and eboss Science. Hyunmi Song (KIAS)

The quest for Type 2 quasars: What are the X-ray observations of optically selected QSOs2 telling us?

Where do Luminous Red Galaxies form?

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University

Halo Occupation Distribution Modeling of AGN Clustering: An Overview

The Zoo of AGN in the clustering context: quasar clustering and what it tells or Galaxy formation is Messi, but we have Gotze Klose

High Redshift Universe

Crurent and Future Massive Redshift Surveys

Constraining Dark Energy with BOSS. Nicolas Busca - APC Rencontres de Moriond 19/10/2010

Astronomical image reduction using the Tractor

ROSAT Roentgen Satellite. Chandra X-ray Observatory

BAO and Lyman-α with BOSS

X-raying High-Redshift AGNs and the First Black Holes: From Chandra to Lynx

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation December, 2017

Aspects of large-scale structure. John Peacock UniverseNet Mytilene Sept 2007

Énergie noire Formation des structures. N. Regnault C. Yèche

Quasar identification with narrow-band cosmological surveys

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS

BAO from the DR14 QSO sample

LSST, Euclid, and WFIRST

The Bright Side of the X-ray Sky The XMM-Newton Bright Survey. R. Della Ceca. INAF Osservatorio Astronomico di Brera,Milan

Results from the Chandra Deep Field North

The erosita All-Sky Survey and possible synergisms with SPHEREX. M.Salvato, for the erosita collaboration

CHARACTERIZATION OF AGN VARIABILITY IN THE OPTICAL AND NIR REGIMES

Detection of hot gas in multi-wavelength datasets. Loïc Verdier DDAYS 2015

LSS: Achievements & Goals. John Peacock Munich 20 July 2015

Cosmology on the Beach: Experiment to Cosmology

BAO analysis from the DR14 QSO sample

Cosmology The Road Map

Jorge Cervantes-Cota, ININ. on behalf of the DESI Collaboration

Clustering of Star-forming Galaxies and connections with AGN activity

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Are VISTA/4MOST surveys interesting for cosmology? Chris Blake (Swinburne)

EUCLID Spectroscopy. Andrea Cimatti. & the EUCLID-NIS Team. University of Bologna Department of Astronomy

New techniques to measure the velocity field in Universe.

Evolution of galaxy clustering in the ALHAMBRA Survey

Surveys for high-redshift (z>6) AGN with AXIS (cf. Athena) James Aird. University of Cambridge (-> University of Leicester)

eboss Lyman-α Forest Cosmology

Present and future redshift survey David Schlegel, Berkeley Lab

Summer School on Cosmology July Clusters of Galaxies - Lecture 2. J. Mohr LMU, Munich

Large Scale Structure (Galaxy Correlations)

X ray Survey Results on AGN Physics and Evolution Niel Brandt

The bolometric output of AGN in the XMM-COSMOS survey

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You

Measuring BAO using photometric redshift surveys.

Fundamental cosmology from the galaxy distribution. John Peacock Hiroshima 1 Dec 2016

The rise of galaxy surveys and mocks (DESI progress and challenges) Shaun Cole Institute for Computational Cosmology, Durham University, UK

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007

Late time cosmology with GWs

Clusters: Observations

Extended Chandra Multi-Wavelength Project (ChaMPx): Source Catalog and Applications

The Large Synoptic Survey Telescope

Astr Resources

Photometric Redshifts for the NSLS

tsz cluster counts and power spectrum combined with CMB

Francisco Prada Campus de Excelencia Internacional UAM+CSIC Instituto de Física Teórica (UAM/CSIC) Instituto de Astrofísica de Andalucía (CSIC)

The gas-galaxy-halo connection

arxiv:astro-ph/ v1 6 Dec 1999

Introductory Review on BAO

Cosmological Constraints from the XMM Cluster Survey (XCS) Martin Sahlén, for the XMM Cluster Survey Collaboration The Oskar Klein Centre for

Galaxy Clusters in Stage 4 and Beyond

Refining Photometric Redshift Distributions with Cross-Correlations

Science with large imaging surveys

The PRIsm MUlti-object Survey (PRIMUS)

Baryon Acoustic Oscillations (BAO) in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample

Hard X-ray AGN and the Cosmic X-ray Background

AGN Selec)on Techniques. Kris)n Kulas Astro 278 Winter 2012

Physics of the hot evolving Universe

Measuring Neutrino Masses and Dark Energy

Constraints and Signals from the Diffuse Gamma Ray and X-ray Backgrounds

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect

Galaxy Clusters. Giants of the Universe. Maciej Soltynski. ASSA Symposium Virgo cluster around M86

Cosmology with the ESA Euclid Mission

The statistical applications on the galaxies and AGNs in SDSS

Testing General Relativity with Redshift Surveys

Cosmology with LISA. massive black hole binary mergers as standard sirens. Nicola Tamanini. IPhT CEA Saclay & APC Univ.

Reverberation Mapping in the Era of MOS and Time-Domain Surveys: from SDSS to MSE

The SRG/eROSITA all- sky survey. A. Merloni (MPE)

Occupy Dark Matter: Accessing the 99% of dusty galaxies that lie beneath the confusion noise floor. Marco Viero - Caltech

A unified multi-wavelength model of galaxy formation. Carlton Baugh Institute for Computational Cosmology

SKA radio cosmology: Correlation with other data

X-ray binaries. Marat Gilfanov MPA, Garching

The BAT AGN Survey - Progress Report J. Tueller, C. Markwardt, L. Winter and R. Mushotzky Goddard Space Flight Center

MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC)

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK

Cosmology of Photometrically- Classified Type Ia Supernovae

Rajib Ganguly (University of Michigan-Flint)

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

Cosmological Galaxy Surveys: Future Directions at cm/m Wavelengths

The dark matter haloes of moderate luminosity X-ray AGN as determined from weak gravitational lensing and host stellar masses

Transcription:

By Collaborators Alex Kolodzig (MPA) Marat Gilfanov (MPA,IKI), Gert Hütsi (MPA), Rashid Sunyaev (MPA,IKI) Publications Kolodzig et al. 2013b, A&A, 558, 90 (ArXiv : 1305.0819) Hüsti et al. 2014, submitted (ArXiv: 1403.5555) At Clustering Measurements of AGN, ESO, Garching, Germany, 14.-18.06.2014 Background Picture: Millennium Simulation (MPA); Spectrum-Roentgen-Gamma satellite (P. Predehl 2011)

X-ray surveys of the last ~2 decades ROSAT Average XMM-Newton Poles Chandra Figure by Brandt & Hasinger 2005 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 2

Large-scale structure studies in X-rays Krumpe+2012 ROSAT LSS studies: # of AGN Area [deg 2 ] Depth Krumpe+2012 ~3 500 ~5 500 z < 0.5 Allevato+2011 ~600 ~2 z~1 erass ~3 000 000 34 000 z~1.0 Poles erass XMM-Newton Chandra Allevato+2011 Figure by Brandt & Hasinger 2005 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 3

Large-scale structure studies in X-rays Krumpe+2012 ROSAT LSS studies: # of AGN Area [deg 2 ] Depth Krumpe+2012 ~3 500 ~5 500 z < 0.5 Allevato+2011 ~600 ~2 z~1 erass ~3 000 000 34 000 z~1.0 erass XMM-Newton erass: # of AGN Area [deg 2 ] Depth SPIDERS (brightest ~30%) >50 000 ~2 500 z~0.8 4MOST (brightest ~60%) Allevato+2011 ~700 000 14 000 z~0.9 Chandra Figure by Brandt & Hasinger 2005 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 4

erass: predicted redshift distribution Peak(Median): L * ~ 10 44 erg/s 10%: >10 45 erg/s Peak: ~0.8 ~0.7 ~0.5 Median ~1.0 ~0.9 ~0.8 XLF of Hasinger+2005 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 5

Tools of erass for LSS studies AGN as phase of galaxy evolution: X-ray Luminosity Function (see Kolodzig et al. 2013a): AGN evolution accretion history of SMBHs Clustering strength (linear bias factor): AGN environment AGN triggering mechanism SMBH co-evolution with dark matter halo AGN as cosmological probe: Baryonic acoustic oscillations (BAOs) independent constrains on cosmological parameters 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 6

Clustering Model

Our Clustering Model Based on Hütsi, Gilfanov & Sunyaev 2012: Angular Power Spectrum: Assumptions: Mass of dark matter halo (DMH) of AGN hosts: (e.g. Allevato et al. 2011, Krumpe et al. 2012, Mountrichas et al. 2013) M DMH,eff = 2 10 13 M /h -> bias b(z, M DMH,eff ) X-ray Luminosity Function of Hasinger et al. 2005 (0.5-2.0 kev) for flux-cut and redshift-evolution -> selection function (z) (LDDE model, with redshift cutoff of Brusa et al. 2009 at z>2.7) Cosmology: flat CDM, Ω = 0.7, Ω m = 0.3, Ω b = 0.05, h = 0.7, 8 = 0.8 Assume: redshifts are known! C 2 lin ( ) 2 P k W ( k, z) k dk DM z ( ) ( W ( k, z) j k r( z) g( ) b z z) dz growth factor 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 8

predicted angular power spectrum - C l full erass AGN sample (0 < z < 5) shot noise level C 2 1 C (2 1), fsky N zmin zmax linear regime cut Kolodzig et al. 2013b 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 9

predicted angular power spectrum - C l Kolodzig et al. 2013b 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 10

Clustering Strength (Linear Bias Factor)

Clustering Strength vs. redshift Extragal.Sky 14 000 deg 2 Kolodzig+2013b 2 500 deg 2 S/N of 7:1 3 high S/N (>10) for wide z-range and small sky fraction 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 12

Clustering Strength vs. redshift Extragal.Sky adopted from Kolodzig+2013b Brightest 60% Brightest 60% 14 000 deg 2 2 500 deg 2 3 brightest 60% (4MOST-case) and 2 500 deg 2 : good S/N ( 3) up to z~2.5 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 13

Clustering Strength vs. redshift Extragal.Sky adopted from Kolodzig+2013b Brightest 60% Brightest 60% 14 000 deg 2 2 500 deg 2 3 Brightest 30% (SPIDERS-case) brightest 30% (SPIDERS-case) and 2 500 deg 2 : good S/N ( 3) up to z~2.0 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 14

Clustering Strength vs. redshift 4MOST-case: brightest 60% of erass AGN, 14 000 deg 2 3 adopted from Kolodzig+2013b 1 st time: accurate luminosity and redshift resolved studies studies of dark-matter-halo mass of AGN to unprecedented detail 1 st time: statistically meaningful sample of AGN with L X > 10 44 erg/s comparison with optical quasar-studies possible 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 15

Clustering Strength Measurements - state of the art Fanidakis et al. 2013 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 16

Small scales: HOD modeling possible 100 deg 2 Extragal.Sky Average: ~80 AGN/deg 2 Ecliptic Poles: >400 AGN/deg 2 Richardson et al. 2013 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 17

Baryonic Acoustic Oscillations (BAOs)

BAOs beyond z>0.8 Redshift-Range: 0.8 < z < 2.0 so far no detection best tracers: AGN, QSOs and emission line galaxies (ELGs) planned galaxy surveys: Weinberg et al. 2013 erass (2014-2019): AGN ~34 kdeg 2 (4MOST: 14 kdeg 2 ) Dedicated optical BAO surveys: eboss (2014-2020): ELGs ~1.5 kdeg 2, QSOs ~7.5 kdeg 2 DESI (BigBOSS) (>2020): ELGs ~14 kdeg 2 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 19

BAOs with erass AGN sample Extragal.Sky 0.0<z<3.0 CL~14 (full erass AGN sample) 0.8<z<2.0 CL~11 (uncharted z-range) 14 000 deg 2 0.8<z<2.0 CL~5 Brightest 60% 0.8<z<2.0 CL~4 (4MOST-case) 1 st convincing detection with X-ray selected AGN Kolodzig+2013b, Hüsti+2014 (submitted) 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 20

Comparison with dedicated BAO surveys 4MOST 0.8<z<2.0 20kdeg 2 (erass AGN, brightest 60%) eboss QSO 1.0<z<2.2 7.5kdeg 2 BOSS LRG 0.4<z<0.7 10kdeg 2 HETDEX L E 1.9<z<3.5 450deg 2 eboss ELG 0.6<z<1.0 1.5kdeg 2 adopted from Kolodzig+2013b 1 st peak 2 nd peak comparable with dedicated BAO surveys due to large sky coverage of erass (spec-z for Extragal.Sky) 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 21

We need redshifts! For clustering strength & XLF: Required Accuracy: z ~ 0.10 at z~1 photo-z sufficient Required photometry: ugrizyjhk-bands or more (Salvato et al. 2011) Or narrow bands as for J-PAS Optimal photo-z suppliers: J-PAS (2015-2021): ~8.5 kdeg 2, ~7 10 5 counterparts (I AB = 22.5 mag) Current/future photo-z suppliers: SDSS: ~14 kdeg 2, ~10 6 counterparts (I AB = 21.3 mag), ugriz-bands Pan-STARRS PS1: ~30 kdeg 2, >2 10 6 counterparts, griz-bands Euclid (2020-2026): ~15 kdeg 2 ( b >30 ), YJH-Bands LSST (>2019): ~20 kdeg 2, ugrizy-bands Problems with reliability of photo-z (Salvato et al. 2011) Spec-z suppliers: SPIDERS: ~2.5 kdeg 2, ~50 000 spectra 4MOST (>2020): ~14 kdeg 2, ~700 000 spectra 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 22

We need redshifts! Accuracy requirements for BAO detection fraction of catastrophic failures: f fail ~5 ~14 ~8 Full Sky 0.8 < z < 2.0 Photo-z Accuracy: 0 = z /(1+z) Hüsti et al. 2014, submitted, ArXiv: 1403.5555 see for other X-ray survey strategies 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 23

We need redshifts! For 3 detection of BAOs with erass AGN: Required Accuracy (Extragal.Sky): 0 0.01 Required Size (for spec-z): 10 000 deg 2 Potential suppliers: J-PAS (2015-2021): ~8.5 kdeg 2, ~700 000 counterparts ~3 with 0 ~ 0.01 (f fail = 0.0) 4MOST (>2020): ~14 kdeg 2, ~700 000 spectra ~4 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 24

Summary AGN sample of erosita/srg All-Sky Survey: New era of large-scale structure studies with AGN Clustering strength: >10% accuracy for wide z-range for 2 500 deg 2 ; SPIDERS: >30% up to z~2 1 st time: Luminosity & redshift resolved studies of dark-matter-halo mass of AGN up to z~3 1 st time: comparison with optical quasar studies (for L X > 10 44 erg/s) Baryonic Acoustic Oscillations: 1 st time: convincing detection with X-ray selected AGN possible ~11 for extragalactic sky & uncharted region: 0.8<z<2.0 ; 4MOST ~4 Comparable with dedicated optical surveys Remarks: We rely on large & deep photometric & spectroscopic follow-up surveys Cross-correlation with other galaxy types (e.g. ELGs) might have even better statistics For details see: Kolodzig et al. 2013b, A&A 558, 90 (ArXiv: 1305.0819) Hüsti et al. 2014, submitted (ArXiv: 1403.5555) alex@mpa-garching.mpg.de 16.06.2014 erass: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014 25