The State of the Multiverse: The String Landscape, the Cosmological Constant, and the Arrow of Time

Similar documents
Yasunori Nomura. UC Berkeley; LBNL

Tunneling in models of Flux Vacua

A paradox in the global description of the multiverse

Inflationary cosmology. Andrei Linde

Eternally Inflating Multiverse and Many Worlds in Quantum Mechanics: Same Concept?

Dynamical compactification from higher dimensional de Sitter space

Eternal Inflation, Bubble Collisions, and the Disintegration of the Persistence of Memory

Excluding Black Hole Firewalls with Extreme Cosmic Censorship

Eternal Inflation in Stringy Landscape. and A-word. Andrei Linde

Observational Probabilities in Quantum Cosmology

Eternal inflation and the multiverse

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation

Triple unification of inflation, dark matter and dark energy

Contents. Part I The Big Bang and the Observable Universe

arxiv:hep-th/ v3 11 Jun 2004

Black Holes: Complementarity vs. Firewalls

Cosmic Inflation Tutorial

Inflation. Andrei Linde

Inflation, Tuning and Measures

The Standard Big Bang What it is: Theory that the universe as we know it began billion years ago. (Latest estimate: 13:7 ± 0:2 billion years!) I

The distance from Earth to the edge of the observable part of the universe is about 46.5 billion light years, or 4.4 x cm, in any direction.

The Bubble Multiverses of the No Boundary Quantum State

Symmetries and Naturalness in String Theory

Predictions From Eternal Inflation by Stefan Leichenauer

Computational Complexity of Cosmology in String Theory

A Hypothesis Connecting Dark Energy, Virtual Gravitons, and the Holographic Entropy Bound. Claia Bryja City College of San Francisco

The Concept of Inflation

arxiv: v2 [gr-qc] 11 Aug 2010

Aspects of Inflationary Theory. Andrei Linde

Future foam: Non trivial topology from bubble collisions in eternal infla9on

Reconstructing Bulk from Boundary: clues and challenges

Towards a holographic formulation of cosmology

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München

Observing the Dimensionality of Our Parent Vacuum

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

arxiv:hep-th/ v3 16 Apr 2007

String Theory to the Rescue Proof of String Theory & Extra Dimensions?

Holographic methods for cosmology. Gonzalo Torroba Stanford University

Research Center for the Early Universe (RESCEU) Department of Physics. Jun ichi Yokoyama

Inflation on Random Landscapes

Cosmology and particle physics

What is cosmic inflation? A short period of fast expansion, happening very early in the history of the Universe. Outline.

The Cosmological Observables of Pre-Inflationary Bubble Collisions

The No-Boundary Cosmological Measure

Return to cosmology. Is inflation in trouble? Are we cycling back to cycles? And then what happens to the 2 nd law?

About the format of the literature report

The Conventional Big Bang Theory What it is: The theory that the universe as we know it began billion years ago. (Latest estimate: 13:8±0:05 bil

Lecture 12. Inflation. What causes inflation. Horizon problem Flatness problem Monopole problem. Physical Cosmology 2011/2012

EMERGENT GRAVITY AND COSMOLOGY: THERMODYNAMIC PERSPECTIVE

arxiv: v2 [hep-th] 27 Apr 2011

De Sitter Space Without Quantum Fluctuations

Alan Guth, Inflationary Cosmology: Is Our Universe Part of a Multiverse, AAA Lecture, November 6, 2009, p. 1.

Testing the string theory landscape in cosmology

Predicting the Cosmological Constant from the Causal Entropic Principle

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

Unsolved Problems in Theoretical Physics V. BASHIRY CYPRUS INTRNATIONAL UNIVERSITY

arxiv:hep-th/ v1 27 Feb 2003

The Future of Theoretical Physics and Cosmology

The Axidental Universe

Cosmology with a time-varying speed of light 1

The Big Crunch/Big Bang Transition. 1. Measure for inflation 2. Passing through singularities - no beginning proposal

Inflation. Week 9. ASTR/PHYS 4080: Introduction to Cosmology

Shortcomings of the inflationary paradigm

Lecture notes 20: Inflation

Gravity, Strings and Branes

Space-like Singularities and Thermalization

Mass (Energy) in the Universe:

Ay1 Lecture 18. The Early Universe and the Cosmic Microwave Background

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Gravity, Strings and Branes

The Quantum Spacetime

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

PPP11 Tamkang University 13,14 May, Misao Sasaki. Yukawa Institute for Theoretical Physics Kyoto University

Strings, gauge theory and gravity. Storrs, Feb. 07

Cosmology with Extra Dimensions

Gravitation et Cosmologie: le Modèle Standard Cours 8: 6 fevrier 2009

Particles and Strings Probing the Structure of Matter and Space-Time

Quantum Entanglement and the Geometry of Spacetime

Duality and Holography

Introduction to Inflation

Non Thermal Relics and Alternative Theories of Gravity

The Universe: What We Know and What we Don t. Fundamental Physics Cosmology Elementary Particle Physics

Yasunori Nomura. UC Berkeley; LBNL; Kavli IPMU

The History and Philosophy of Astronomy

Big Bounce and Inflation from Spin and Torsion Nikodem Popławski

Entropy and initial conditions in cosmology

Dark Energy and the Entropy of the Observable Universe

The Search for the Complete History of the Cosmos. Neil Turok

Dark inflation. Micha l Artymowski. Jagiellonian University. January 29, Osaka University. arxiv:

A Universal Correction to the Inflationary Vacuum

Eternal Inflation Theory, the Multiverse, and Cosmology. Inflation and inflationary cosmology have become a big part of the popular

Quantization of Four-form Fluxes and Dynamical Neutralization of the Cosmological Constant

Inflation and the origin of structure David Wands Institute of Cosmology and Gravitation University of Portsmouth

UC Berkeley UC Berkeley Electronic Theses and Dissertations

Gravitational Repulsion!

Wednesday, May 3, 2017 Fifth exam and sky watch, FRIDAY, May 5. Lectures end of 30 to 38. Review Sheet posted. Review Tomorrow, 5 6 PM WEL

Hot Big Bang model: early Universe and history of matter

Vacuum Energy and. Cosmological constant puzzle:

Extreme Cosmic Censorship for Cosmology and Black Holes

Theories of the Initial State

Transcription:

The State of the Multiverse: The String Landscape, the Cosmological Constant, and the Arrow of Time Raphael Bousso Center for Theoretical Physics University of California, Berkeley Stephen Hawking: 70th Birthday Conference Cambridge, 6 January 2011 RB & Polchinski, hep-th/0004134; RB, arxiv:1112.3341

The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape

Magnitude of contributions to the vacuum energy graviton (a) (b) Vacuum fluctuations: SUSY cutoff: 10 64 ; Planck scale cutoff: 1 Effective potentials for scalars: Electroweak symmetry breaking lowers Λ by approximately (200 GeV) 4 10 67.

The cosmological constant problem Each known contribution is much larger than 10 121 (the observational upper bound on Λ known for decades) Different contributions can cancel against each other or against Λ Einstein. But why would they do so to a precision better than 10 121? Why is the vacuum energy so small?

Recent observations Supernovae/CMB/ Large Scale Structure: Λ 0.4 10 121

Recent observations Supernovae/CMB/ Large Scale Structure: Λ 0.4 10 121 0 Why is the energy of the vacuum so small, and why is it comparable to the matter density in the present era?

The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape

Many ways to make empty space

Topology and combinatorics RB & Polchinski (2000) A six-dimensional manifold contains hundreds of topological cycles. (Say, 500.) Suppose each cycle can hold 0 to 9 units of flux Then there will be 10 500 different configurations. This picture is (so far) supported by detailed constructions [Kachru, Kallosh, Linde & Trivedi 2003; Denef and Douglas 2004;... ]

The spectrum of Λ Λ In each vacuum, Λ receives many different large contributions 1 0 1

The spectrum of Λ Λ In each vacuum, Λ receives many different large contributions random variable with values between about -1 and 1 1 0 1

The spectrum of Λ Λ In each vacuum, Λ receives many different large contributions random variable with values between about -1 and 1 With 10 500 vacua, Λ has a dense spectrum [RB & Polchinski 2000] 1 0 1

The spectrum of Λ In each vacuum, Λ receives many different large contributions random variable with values between about -1 and 1 With 10 500 vacua, Λ has a dense spectrum [RB & Polchinski 2000] Many vacua with Λ 10 121 Λ 1 0 1

The spectrum of Λ In each vacuum, Λ receives many different large contributions random variable with values between about -1 and 1 With 10 500 vacua, Λ has a dense spectrum [RB & Polchinski 2000] Many vacua with Λ 10 121 But will those special vacua actually exist somewhere in the universe? Λ 1 0 1

The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape

Metastability and eternal inflation Fluxes can decay spontaneously (Schwinger process)

Metastability and eternal inflation Bubble expands to eat up the parent vacuum But for Λ > 0, the parent vacuum expands even faster Guth & Weinberg (1982) So the parent vacuum can decay again somewhere else Eternal inflation, infinitely many pocket universes

Our place in the multiverse Eternal inflation ensures that vacua with Λ 1 are cosmologically produced RB & Polchinski 2000 But why do we find ourselves in such a special place in the Multiverse?

Our place in the multiverse Typical regions have Λ 1 and admit only structures of Planck size, with at most a few quantum states, according to the holographic principle. They do not contain observers. Quantitative analysis: Λ t 2 gal Weinberg 1987... [...] Λ t 2 obs RB, Harnik, Kribs & Perez 2007 RB, Freivogel, Leichenauer & Rosenhaus 2011

Connecting with standard cosmology What we call big bang was actually the decay of our parent vacuum Neighboring vacua in the string landscape have vastly different Λ ( Large Step Size ) The decay of our parent vacuum released enough energy to allow for subsequent nucleosynthesis and other features of standard cosmology RB & Polchinski 2000

The string multiverse is special This way of solving the cosmological constant problem does not work in all theories with many vacua In a multiverse arising from an (ad-hoc) one-dimensional quantum field theory landscape, most observers see a much larger cosmological constant [Abbott 1985, Brown & Teitelboim 1987] (This is a theory that leads to a multiverse and has been falsified!)

String Theory is special Topology of extra dimensions, D-branes, Fluxes generate high-dimensional parameter space which generates discretuum of vacua without fine-tuning while preserving Large Step Size, thus circumventing the empty universe problem

The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape

Definition S(t f) ti t f ΔS S(t ) i The observed arrow of time is the entropy S S(t f ) S(t i ) produced in our past light-cone since the time t i.

Definition S(t f) ti t f ΔS S(t ) i E.g., with t i = t BBN = 3 min, one finds S 10 103. This is dominated by the supermassive black holes that formed since nucleosynthesis.

Definition S(t f) ti t f ΔS S(t ) i Ordinary matter entropy contributes only 10 86, from the cosmic infrared background produced by galactic dust RB, Harnik, Kribs & Perez 2007

Definition S(t f) ti t f ΔS S(t ) i The exact value of S will not be important. The point is that it is large: the early universe was in a very special state, even more special than the current state, by a superexponential factor such as exp(10 103 ).

Claim S(t f) ti t f ΔS S(t ) i Whether or not a theory predicts an arrow of time depends primarily on its vacuum structure. In particular, low-entropy initial conditions are not necessary, and/or not sufficient, for an arrow of time, depending on the vacuum structure.

The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape

Negative Cosmological Constant Consider a flat or open FRW universe with Λ < 0 that begins with a big bang and radiation domination. It will end in a big crunch on a timescale of order Λ 1/2. There are at least two necessary conditions for an arrow of time: low initial entropy, and small Λ.

Negative Cosmological Constant Since S(t i ) is non-negative, an arrow of time requires the existence of a past light-cone with S(t f ) > 10 103 The covariant entropy bound [RB 1999] implies S(t f ) Λ 2 RB, Freivogel & Leichenauer 2010 Thus, the theory predicts the observed arrow of time only if Λ 10 52

Negative Cosmological Constant The rate for large downward fluctuations of the entropy is exp( 10 103 ), and time is short, so the Second Law rules Thus, the entropy at the big bang must satisfy S(0) S(t i ) S(t f ) 10 103. The theory predicts an arrow of time only if initial conditions select for a state of low coarse-grained entropy (compared to some later state)

Negative Cosmological Constant There are other necessary conditions, such as absence of large positive spatial curvature existence of a matter-dominated era...

Negative Cosmological Constant There are other necessary conditions, such as absence of large positive spatial curvature existence of a matter-dominated era... In any case, this model conflicts with observation (Λ > 0).

Positive Cosmological Constant Consider a flat or open FRW universe with Λ > 0 that begins with a big bang and radiation domination. In this model, an arrow of time is not predicted, even if the initial entropy and the vacuum energy are both small. Dyson, Kleban & Susskind 2002 Guth s talk, yesterday

Positive Cosmological Constant After a finite period of duration t Λ Λ 1/2 after the big bang, vacuum energy dominates. At late times, the universe becomes empty de Sitter space. The cosmological event horizon and its interior, the causal patch, satisfy analogues of the laws of black hole thermodynamics [Gibbons & Hawking 1977] de Sitter space is a thermal state with temperature T Λ 1/2. What happens at early times in the causal patch is irrelevant, since an infinite number of observers (including states such as ours) are thermally produced at late times.

Positive Cosmological Constant Consider two coarse-grained states with equal energy but different entropy S 2 > S 1. Boltzmann: p i exp(s i E i /T ) Hence, state 2 will be produced more frequently, by a factor exp(s 2 S 1 ).

Positive Cosmological Constant Let state 1=the observed universe, and state 2=the observed universe but with a CMB temperature of 4 K and a slightly smaller number of protons. Each state contains the same number of observers, but state 2 is produced more frequently by a factor exp(10 88 ). Other states with yet more entropy (and lower energy) are still more strongly preferred.

Positive Cosmological Constant The most probable state is empty de Sitter space (with S = 3π/Λ and E = 0), but this will not be observed. The most probable state with observers contains only one observer, otherwise empty de Sitter space (a Boltzmann brain ). A state such as ours, far from maximum entropy, has probability 0. The theory predicts that the vast majority of observers see a small arrow of time, corresponding to their own decay back to equilibrium (i.e., to empty de Sitter space).

Positive Cosmological Constant This result is due to Dyson, Kleban, and Susskind [2002]. It assumes that stable de Sitter space is a finite-entropy quantum system with unitary, ergodic evolution. It implies that stable de Sitter space is experimentally ruled out because it conflicts with our observation of a large arrow of time. They concluded that the observed positive vacuum energy must be metastable.

The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape

Consider a metastable de Sitter vacuum Goal: a model with Λ > 0 that predicts an arrow of time.

The causal patch measure I will use the causal patch measure [RB 2006]: p I = N I p J N J, where N I is the expected number of times events of type I happen within the event horizon (the past of a maximally extended geodesic). Without a measure, N I and N J would both diverge. This particular regulator is motivated by the resolution of the xeroxing paradox in unitary black hole evolution. For the arrow of time analysis, several other measures give the same results.

A theory with an arrow of time V IC OO de Sitter A T crunch If initial conditions are low-entropy, and if vacuum A decays faster than it produces Boltzmann brains (Γ BB,A < Γ A ), then an arrow of time is predicted. (See, however, [Page 2006].)

A theory without an arrow of time V BB IC de Sitter A T crunch Q: What if initial conditions have high entropy? A: N BB Γ BB,A N OO Γ OO,A

A theory without an arrow of time V IC OO BB de Sitter A T crunch Q: What if Γ BB,A < Γ A? A: N BB Γ 1 A N OO

The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape

Goal Goal: a model with Λ > 0 that predicts an arrow of time, despite initial conditions with higher entropy than the observed universe: S(0) S(t f ) We will see that this model has features that are shared by the string landscape.

Two landscapes with four vacua A OO BB A OO (a) B IC C T IC C (b) B T Theory (a) and theory (b) differ only in the ordering of vacua. Same vacuum energies, same low-energy physics, same initial conditions. Observers of any type exist only in B; Γ BB,B < Γ B.

Two landscapes with four vacua A OO BB A OO (a) B IC C T IC C (b) B T In theory (b), ordinary observers dominate, despite arbitrarily high entropy initial conditions in vacuum C. [RB 2011] Vacuum A acts as a bottleneck.

Two landscapes with four vacua A OO BB A OO (a) B IC C T IC C (b) B T An example of a theory of initial conditions that would select vacuum C is the Hartle-Hawking no-boundary proposal [1983]. It selects for the empty de Sitter vacuum of highest entropy, with probability exp(3π/λ). In the landscape (b), the no-boundary proposal is compatible with the observed arrow of time.

Two landscapes with four vacua A OO BB A OO (a) B IC C T IC C (b) B T An example of a theory of initial conditions that would select vacuum C is the Hartle-Hawking no-boundary proposal [1983]. It selects for the empty de Sitter vacuum of highest entropy, with probability exp(3π/λ). In the landscape (b), the no-boundary proposal is compatible with the observed arrow of time. However, Page 2012, p.c.

The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape

The Arrow of Time in the String Landscape A OO BB A OO (a) B IC C T IC C (b) B T The string landscape shares features with the second model: No Fine-Tuning No observers in initial vacuum Even Boltzmann brains require Λ 1; such vacua must be populated by some decay path Large Step Size: vacua with observers will be entered from high-λ vacua, with enough free energy to produce ordinary observers Boltzmann brains are Boltzmann-suppressed

The Arrow of Time in the String Landscape Assuming Γ BB,A < Γ A for all de Sitter vacua, one can show that RB & Freivogel 2006 RB, Freivogel & Yang 2008 De Simone et al. 2008 an arrow of time is predicted independently of the initial entropy. RB 2011

Happy Birthday Stephen!

Happy Birthday Stephen! Thank you for making our life beautifully difficult.