ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

Similar documents
Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE 560 MOS TRANSISTOR THEORY

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

FIELD-EFFECT TRANSISTORS

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

Electrical Characteristics of MOS Devices

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

Lecture 11: MOS Transistor

Lecture 04 Review of MOSFET

Lecture 12: MOS Capacitors, transistors. Context

Section 12: Intro to Devices

Choice of V t and Gate Doping Type

The Intrinsic Silicon

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The Devices: MOS Transistors

Lecture 22 Field-Effect Devices: The MOS Capacitor

EE105 - Fall 2006 Microelectronic Devices and Circuits

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

Section 12: Intro to Devices

ECE 342 Electronic Circuits. 3. MOS Transistors

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

MOS Transistor I-V Characteristics and Parasitics

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Virtual Device Simulation. Virtual Process Integration

ECE 340 Lecture 39 : MOS Capacitor II

Lecture 3: CMOS Transistor Theory

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Class 05: Device Physics II

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

ECE 546 Lecture 10 MOS Transistors

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

an introduction to Semiconductor Devices

Extensive reading materials on reserve, including

MOSFET: Introduction

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is

Device Models (PN Diode, MOSFET )

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

Lecture 12: MOSFET Devices

MOS CAPACITOR AND MOSFET

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Device Models (PN Diode, MOSFET )

Lecture 4: CMOS Transistor Theory

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Homework Assignment No. 1 - Solutions

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Chapter 7. The pn Junction

EECS130 Integrated Circuit Devices

Semiconductor Physics Problems 2015

ESE 570 MOS TRANSISTOR THEORY Part 2

Lecture 5: CMOS Transistor Theory

EE5311- Digital IC Design

Integrated Circuits & Systems

VLSI Design The MOS Transistor

Practice 3: Semiconductors

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

1. The MOS Transistor. Electrical Conduction in Solids

Dept. of Materials Science and Engineering. Electrical Properties Of Materials

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ECE 497 JS Lecture - 12 Device Technologies

Transport in Metal-Oxide-Semiconductor Structures

The Devices. Devices

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

6.012 Electronic Devices and Circuits

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

JFET/MESFET. JFET: small gate current (reverse leakage of the gate-to-channel junction) More gate leakage than MOSFET, less than bipolar.

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005

Schottky diodes. JFETs - MESFETs - MODFETs

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture 7 MOS Capacitor

Classification of Solids

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 17 - p-n Junction. October 11, Ideal p-n junction in equilibrium 2. Ideal p-n junction out of equilibrium

EE105 - Fall 2005 Microelectronic Devices and Circuits

MOS Transistor Theory

Semiconductor Integrated Process Design (MS 635)

Unified Compact Model for Generic Double-Gate

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well.

Microelectronics Part 1: Main CMOS circuits design rules

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

ECE321 Electronics I

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

Transcription:

ESE 570 MOS TRANSISTOR THEORY Part 1

TwoTerminal MOS Structure 2 GATE Si Oxide interface n n Mass Action Law VB 2

Chemical Periodic Table Donors American Chemical Society (ACS) Acceptors Metalloids 3

Ideal Equilibrium MOS Capacitor Energy Bands q / Si =q 3 Si (,E C E V Oxide qφm metal VG = 0 Work Functions qφm, qφsi = energy required to move an electron from E F to Evacuum for metal gate, Si respectively. Si surface EC, EFm EFp Gate p doped Si E C E V E i= 2 NOTE: 1. qφ and E are in units of energy = electronvolts (ev); where 1 ev = 1.6 x 10 19 J. 2. 1 ev corresponds to energy acquired by a free electron that is accelerated by an electric potential of one volt. 3. Φ and V corresponds to potential difference in volts. 4

MOS Capacitor with External Bias Three Regions of Operation: 1. Accumulation Region VG < 0 2. Depletion Region VG > 0, small 3. Inversion Region VG VT, large 5

Energy Bands Accumulation Region Si surface Accumulation VG < 0 EFm qv G =E Fp E Fm Band bending due to VG < 0 qφ(x) qφs qφfp 0 EFp x q / Fp = E Fp E i bulk )0 q /, x = E Fp E i, x Surface potential: q / S =q /,0)0 Band bending:. E i,x = E i,x E i bulk *0 6

MOS Capacitor Depletion Region tox mobile holes 7

Energy Bands Depletion Region Si surface Depletion VG > 0 (small) Band bending due to VG > 0 qφ(x) qφfp qv G =E Fp E Fm qφs EFm xd EFp q / Fp = E Fp E i bulk )0 q /, x = E Fp E i, x x 0 Surface Potential: q / S =q /,0*0 Band bending:. E i,x = E i, x E i bulk )0 8

MOS Capacitor Depletion Region tox surface potential (Fermi 2 S potential at surface) 2 2 Fp Bulk or Fermi potential 2 =2 = kt ln ni )0 Fp F q NA 26 mv at room T Mobile hole charge density (per unit area) in thin layer parallel to SiOxide interface Depletion region potential needed to displace dq by distance x into bulk (Poisson Eq.) NOTE 2 Fp 2Fp 2S 2S 2 FS 2 1Si 2 2FpS 2 xd= qna Q= q N A x d = 2 q N A 1 Si 2 2S 2 F S Fp 2 9

Energy Bands Inversion Region Si surface Inversion VG VT0 > 0 / S = / Fp @ V G =V T0 qv G =E Fp E Fm qφfp qφs EFm EFp q / Fp = E Fp E i bulk )0 xdm q /, x = E Fp E i, x x 0 Surface Potential: q/ S =q /,0= q / Fp *0 Band bending:. E i,x = E i, x E i bulk )0 10

MOS Capacitor Inversion Region VG VT (threshold voltage) tox VG = VT for φs = φfp F.= q N A 1 Si 2 2 22Fp S = 2 Fp 22S = 2 F 2 1 Si 2 2Fp 2 1 Si 2 2 F2 S 2F x dm= x dm=x d l 2 = 22S= q N A = 2F qn A ni kt 2 Fp =2 F = ln q NA S F,2 S = 2 F kt N D 2Fn =2 F = ln q ni 11

MOS Capacitor Inversion Region VG VT (threshold voltage) INVERSION CONDITION Key Equations 2S = 2F when n = NA ni kt 2 F =2 Fp= ln V q NA kt N D V 2F =2 Fn = ln q ni Depletion region charge density psub nsub Q B0 = qn A 1 Si 2 2 F Where c/cm2 1 Si 31 ox F/cm VG = VFB for φs = φf flat band (FB) condition, i.e. no band bending. 12

nmos layout 13

G 14

TwoTerminal MOS Structure > nmos Transistor VG VS VD depletion region 15

nmos Transistor = MOS Capacitor source/drain VSB = 0 VS VD VG NOTE: In Cadence SPICE = Spectre 1 Si 31 ox m where 21Si 2 2Fp V SB where x dm= qn A NOTE: Since NA >> ni : φfp < 0 16

VT0n,p [VT0 > VT0 in SPICE] Q ox Q B0 for nmos and pmos V T0=/GC 22 F VFB = flat band voltage Q ox V FB =/GC / GC Q B0 = q N A 1 Si 2 2 F ) with VSB = 0. VFB VFB l work function between gate and channel for psub 2 F =2 Fp 17

Adjusting VT0 Using and an Added Channel Implant Q B0 V T0 =V FB 2 2F Intrinsic VT0 no channel implant adjustment Q B0 q N I V =V T0 (. V T0 =V FB 22 F ± ' T0 qni.v T0 =± Adjusted V'T0 due to channel implant adjustment with carrier concentration NI qni for ptype implant ( q N I for ntype implant NOTE: When channel implant adjustment N I is done as a step in the CMOS process, the SPICE parameter VT0 refers to the adjusted threshold voltage V'T0. 18

Q B0 V T0 =V FB 2 2F Q B= q N A 1 Si 2 2 F V SB for VSB = 0 Q B0 = q N A 1 Si 2 2F Q B Q B0 Q B0 ( V T =V FB 22 F Q B0 Q B Q B0 V T =V FB 22 F VT0 Q B Q B0 2q N A 1 Si =, 2 2F V SB 2 2 F V T =V T0 (0, 2 2 F V SB 2 2 F units = V1/2 19

VSB is 0 in nmos, 0 in pmos VOX is negative positive in )pmos, negative in pmos (VT0p) Q is fornmos nmos(v and T0n T0 0 20

VSB 21

1 for 1 A=10 10 m 1 φf Q B0 V T0n=V FB 22Fp ni kt 1.45 x 1010 2 Fp = ln =0.26V ln, = 0.35V 16 q NA 10 22

Q B0 V T0n=V FB 22Fp 1 2 Fp = 0.35 V Q B0 = 2 q N A 1 Si 22 Fp.= 2,1.6 x 10 19 16 3 12 C,10 cm,1.06 x 10 1 F cm 0.70 V F = C/V V T0n= 1.04 V 2, 0.35V, 0.72 V =0.38 V 23

2 Example 1 2Fp = 0.35V bulk potential V Tn=V T0n(0, 2 2 Fp V SB 2 2 F Units Calc. 5.824 x 10 8 C /,V 1/ 2 cm 2 1/ 2.= =0.85 V 1/2 V 6.8 x 10 8 C /,V cm 2 C 2 cm 4 V 1 =V 1/ 2 2 C cm V 1 24

2 V Tn=V T0n(0, 22Fp V SB 22 F where V T0n =0.38 V 1/ 2 0=0.85V 2Fp = 0.35V 1 V Tn=0.38 V (0, 0.70 V V SB 0.70 V 25