u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that

Similar documents
(PDE) u t k(u xx + u yy ) = 0 (x, y) in Ω, t > 0, (BC) u(x, y, t) = 0 (x, y) on Γ, t > 0, (IC) u(x, y, 0) = f(x, y) (x, y) in Ω.

Differential Equations 2 Homework 5 Solutions to the Assigned Exercises

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5

Wave Equation on a Two Dimensional Rectangle

10 Elliptic equations

MA 201: Partial Differential Equations Lecture - 12

Module 9: The Method of Green s Functions

Lecture 24: Laplace s Equation

1 2-D Second Order Equations: Separation of Variables

Summary: Method of Separation of Variables

M344 - ADVANCED ENGINEERING MATHEMATICS

1 E3102: a study guide and review, Version 1.0

Section 3.2 Maximum Principle and Uniqueness

1 1D heat and wave equations on a finite interval

APM346H1 Differential Equations. = u x, u = u. y, and u x, y =?. = 2 u t and u xx= 2 u. x,t, where u t. x, y, z,t u zz. x, y, z,t u yy.

Chapter Five - Eigenvalues, Eigenfunctions, and All That

Waveguide Guide: A and V. Ross L. Spencer

Consequently, the temperature must be the same at each point in the cross section at x. Let:

AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h

The Wave Equation I. MA 436 Kurt Bryan

Partial Differential Equations

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

MA FINAL EXAM INSTRUCTIONS

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

(9) P (x)u + Q(x)u + R(x)u =0

AMS 212A Applied Mathematical Methods I Lecture 06 Copyright by Hongyun Wang, UCSC. ( ), v (that is, 1 ( ) L i

Suggested Solution to Assignment 5

Green function and Eigenfunctions

REVIEW Chapter 1 The Real Number System

Math Fall 2006 Sample problems for the final exam: Solutions

Variational Techniques for Sturm-Liouville Eigenvalue Problems

Math 5440 Problem Set 3 Solutions

Bridging the gap: GCSE AS Level

3 Mathematics of the Poisson Equation

STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Torsion in Groups of Integral Triangles

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

The Regulated and Riemann Integrals

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

Mathematics. Area under Curve.

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1

1 E3102: A study guide and review, Version 1.2

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

13: Diffusion in 2 Energy Groups

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Section 4: Integration ECO4112F 2011

Thomas Whitham Sixth Form

Math 124A October 04, 2011

Chapter 6 Techniques of Integration

Topics Covered AP Calculus AB

Math 5440 Problem Set 3 Solutions

MATH 423 Linear Algebra II Lecture 28: Inner product spaces.

Polynomials and Division Theory

Brief Notes For Math 3710

Linear Systems with Constant Coefficients

Sturm-Liouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

Module 6: LINEAR TRANSFORMATIONS

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 1 Total 30 Points. 1. Jackson Points

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

Simple Harmonic Motion I Sem

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

Abstract inner product spaces

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

Pressure Wave Analysis of a Cylindrical Drum

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

2. THE HEAT EQUATION (Joseph FOURIER ( ) in 1807; Théorie analytique de la chaleur, 1822).

c n φ n (x), 0 < x < L, (1) n=1

Review of Gaussian Quadrature method

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx

Recitation 3: More Applications of the Derivative

Bases for Vector Spaces

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

dy ky, dt where proportionality constant k may be positive or negative

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Patch Antennas. Chapter Resonant Cavity Analysis

Chapter 8.2: The Integral

STURM-LIOUVILLE PROBLEMS: GENERALIZED FOURIER SERIES

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman

Separation of Variables in Linear PDE

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

Chapter 3 The Schrödinger Equation and a Particle in a Box

Elliptic Equations. Laplace equation on bounded domains Circular Domains

Sturm-Liouville Theory

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

Designing Information Devices and Systems I Discussion 8B

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

k and v = v 1 j + u 3 i + v 2

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Indefinite Integral. Chapter Integration - reverse of differentiation

( ) Same as above but m = f x = f x - symmetric to y-axis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists.

Integral equations, eigenvalue, function interpolation

Chapter 3. Vector Spaces

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

September 13 Homework Solutions

Section 6.1 Definite Integral

Transcription:

Seprtion of Vriles for Higher Dimensionl Wve Eqution 1. Virting Memrne: 2-D Wve Eqution nd Eigenfunctions of the Lplcin Ojective: Let Ω e plnr region with oundry curve Γ. Consider the wve eqution in Ω with zero displcement on Γ: (PDE u tt c 2 (u xx + u yy = (x, y in Ω, t >, (BC u(x, y, t = (x, y on Γ, t >, (IC u(x, y, = f(x, y, u t (x, y = g(x, y (x, y in Ω. (IDEA: Seprtion of Vriles We look for solutions of (PDE-(BC whose sptil structure of the displcement function remins invrint with time. In these solutions only the mplitudes of the oscilltion my chnge with time. Mthemticlly, we try to clssify ll nontrivil solutions of the following form: u(x, y, t = T(tΦ(x, y. (THE EQUATIONS FOR PRODUCT SOLUTIONS Plugging u = T(tΦ(x, y in (PDE-(BC we see: There is constnt λ such tht ( T (t + c 2 λt(t = t > ; ( Φ xx + Φ yy + λφ = (x, y in Ω, ( Φ = (x, y on Γ. We look for solutions of (*-(**-(*** tht re. Here, (* nd (** re deduced from (PDE, nd (*** follows from (BC. Eqution ( is esy to solve. The min issue now is to solve the eigenvlue prolem ( -(. (EIGENVALUES AND EIGENFUNCTIONS Now focus on the oundry vlue prolem (**-(*** for Φ(x, y. The solution structure of this prolem depends on the prmeter vlue λ. It cn e shown tht for most choices of λ, (**-(*** only hs the trivil solution Φ(x, y. The specil vlues of λ dmiting nontrivil solutions re clled eigenvlues of (**-(***, nd in tht cse, the corresponding nontrivil solutions Φ(x, y re clled eigenfunctions. Unfortuntely, for generl domin Ω, it s impossile to write down the eigenvlues nd eigenfunctions of ( -( in explicit form. We do, however, hve mthemticl theorem out this eigenvlue prolem: THEOREM. (i The eigenvlues of ( -( form sequence of positive numers {λ n } n=1 such tht < λ 1 < λ 2 λ 3 λ 4, lim n λ n = +. (ii The corresponding eigenfunctions Φ n (x, y re smooth functions in Ω. (iii Φ 1 (x, y does not chnge sign in Ω. (iv Ω Φ m(x, yφ n (x, ydxdy = for m n. 1

Let λ = λ n e one of the eigenvlues. We now solve eqution (*, which ecomes The solutions re where A nd B re constnts. T (t + c 2 λ n T(t = t >. T(t = A cos(c λ n t + B (c λ n t, (CLASSIFICATION OF PRODUCT SOLUTIONS Thus, product solution of (PDE-(BC must e of the form u(x, y, t = A cos(c λ n t + B (c ] λ n t Φ n (x, y, n = 1, 2, 3,. (SOLUTION FORMULA FOR THE INIT-BDRY VAL PROBLEM The generl solutions of (PDE-(BC-(IC re liner comintions of the product solutions. We cn use (IC to determine the coefficients in the liner comintion. This finlly gives the solution of the initil-oundry vlue prolem (PDE-(BC-(IC: u(x, t = n=1 n cos(c λ n t + n (c ] λ n t Φ n (x, y, where for n = 1, 2, 3,. Ω n = f(x, yφ n(x, ydxdy Φ, Ω n(x, y 2 dxdy n = 1 c g(x, yφ Ω n(x, ydxdy λ Φ, n Ω n(x, y 2 dxdy 2

2. The Cse of Rectngulr Memrne Ojective: Solve the initil-oundry vlue prolem (PDE-(BC-(IC, for the cse where Ω is the rectngle { < x <, < y < }: (PDE u tt c 2 (u xx + u yy = < x <, < y <, t >, { u(x,, t =, u(x,, t = < x <, t >, (BC u(, y, t =, u(, y, t = < y <, t >, (IC u(x, y, = f(x, y, u t (x, y = g(x, y < x <, < y <. THE EIGENVALUE PROBLEM ( -( cn e solved y further seprtion of vriles: Thnks to the specil symmetry of the rectngulr domin, we cn otin explicit expressions for the eigenvlues nd eigenfunctions. As mtter of fct, the eigenfunctions of the product form: Φ(x, y = X(xY (y will produce ll eigenvlues. Although, in generl there might e eigenfunctions of non-product forms, those non-product eigenfunctions re liner comiintions of product eigenfunctions. In this sense, we only need to solve ( -( for product functions Φ(x, y = X(xY (y. This will seprte the 2-D eigenvlue prolem ( -( to two 1-D eigenvlue prolems which we know how to solve. An ALTERNATIVE APPROACH is to strt from the eginnning with product solutions of the form: u(x, y, t = T(tX(xY (y. Plugging u = T(tX(xY (y in (PDE-(BC we see: there re constnts λ nd µ such tht ( T (t + c 2 (λ + µt(t = t > ; ( x X (x + λx(x = ( < x <, X( = X( = ; ( y Y (y + µy (y = ( < y <, Y ( = Y ( =. We know how to solve 1-D eigenvlue prolem ( x : If nd only if λ is one of the following vlues λ m = (mπ/ 2, m = 1, 2, prolem ( x hs nontrivil solutions which re constnt multiples of X m (x = (mπx/. Another 1-D eigenvlue prolem ( y is solved similrly: If nd only if µ is one of the following vlues µ n = (nπ/ 2, n = 1, 2, prolem ( y hs nontrivil solutions which re constnt multiples of Y n (y = (nπy/. For λ = λ m nd µ = µ n, we now solve eqution (*, which ecomes T (t + c 2 (λ m + µ n T(t = t >. 3

u(x, t = The solutions re T(t = A cos(c λ m + µ n t + B (c λ m + µ n t = A cos(cπ (m/ 2 + (n/ 2 t + B (cπ (m/ 2 + (n/ 2 t. (CLASSIFICATION OF PRODUCT SOLUTIONS Thus, (triple-fctor product solution of (PDE-(BC must e of the form: u(x, y, t = A cos(cπ (m/ 2 + (n/ 2 t+b (cπ ] (m/ 2 + (n/ 2 t (mπx/ (nπy/, where m, n = 1, 2, 3,. (SOLUTION FORMULA FOR THE INIT-BDRY VAL PROBLEM The solution of the initil-oundry vlue prolem (PDE-(BC-(IC is given y: m=1 n=1 m,n cos(cπ (m/ 2 + (n/ 2 t+ m,n (cπ ] (m/ 2 + (n/ 2 t (mπx/ (nπy/, where m,n = 4 m,n = x= y= 4 cπ (m 2 + (n 2 f(x, y x= y= dxdy, g(x, y dxdy, for m, n = 1, 2, 3,. 4

EXERCISES 1] Consider the 2-D wve eqution for virting rectngulr memrne, with the motion of the top nd ottom sides free, nd with the displcement of the left nd right sides fixed t zero: (1 u tt u xx u yy = < x <, < y <, t >, (2i u y (x,, t =, u y (x,, t = x, y, t >, (2ii u(, y, t =, u(, y, t = y, t >, (3 u(x, y, = f(x, y, u t (x, y, = g(x, y < x <, < y <. ( Find ll nontrivil solutions u(x, y, t to (1-(2 of the form u(x, y, t = X(xY (yt(t. ( Find the Fourier series solution formul for (1-(2-(3 with the generl initil dt f(x, y nd g(x, y. (c Find the Fourier series formul in the cse where f(x, y = xy, g(x, y =. 2] Consider the 3-D wve eqution in 3-D ox with zero displcement on the oundry: (4 u tt u xx u yy u zz = < x <, < y <, < z < c, t >, (5 u(, y, z, t = u(, y, z, t = u(x,, z, t = u(x,, z, t = u(x, y,, t = u(x, y, c, t = < x <, < y <, < z < c, t >, (6 u(x, y, z, = f(x, y, z, u t (x, y, z, = g(x, y, z < x <, < y <, < z < c. ( Find ll nontrivil solutions u(x, y, z, t to (4-(5 of the form u(x, y, z, t = X(xY (yz(zt(t. ( Find the Fourier series solution formul for (4-(5-(6 with the generl initil dt f(x, y, z nd g(x, y, z. (See next pge for the nswers 5

ANSWERS: 1] ( ( u(x, y, t = cos A cos(π (m/ 2 + (n/ 2 t + B (π ] (m/ 2 + (n/ 2 t, where m is ny positive integer, n is ny nonnegtive integer, nd A, B re constnts. u(x, y, t = m=1 n= cos m,n cos(π (m/ 2 + (n/ 2 t + m,n (π ] (m/ 2 + (n/ 2 t, 2] ( where m, = 2 f(x, y x= y= m,n = 4 f(x, y cos x= y= m, = 2 g(x, y mπ x= y= 4 m,n = π g(x, y (m 2 + (n 2 m=1 x= y= dxdy (m 1 dxdy (m 1, n 1 dxdy (m 1 ( 1 m+1 ( mπt (c u(x, y, t = cos mπ + m=1 n=1 4( 1 m {1 ( 1 n } mn 2 π 3 cos cos dxdy (m 1, n 1 cos(π (m/ 2 + (n/ 2 t ( kπz u(x, y, z, t = c A cos(π (m/ 2 + (n/ 2 + (k/c 2 t + B (π ] (m/ 2 + (n/ 2 + (k/c 2 t, ( where m, n, k re positive integers nd A, B re constnts. ( kπz u(x, y, z, t = c m=1 n=1 k=1 m,n,k cos(π (m/ 2 + (n/ 2 + (k/c 2 t + m,n,k (π ] (m/ 2 + (n/ 2 + (k/c 2 t, 6

where m,n,k = 8 c m,n,k = c f(x, y, z 8 π (mc 2 + (nc 2 + (k 2 for m 1, n 1, k 1. c ( kπz c g(x, y, z dxdydz ( kπz c dxdydz, 7