Theory of Cosmological Perturbations

Similar documents
Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino

Chapter 4. COSMOLOGICAL PERTURBATION THEORY

1 Intro to perturbation theory

UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences

Astro 448 Lecture Notes Set 1 Wayne Hu

Examining the Viability of Phantom Dark Energy

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum

MATHEMATICAL TRIPOS PAPER 67 COSMOLOGY

Summary of equations for CMB power spectrum calculations

We finally come to the determination of the CMB anisotropy power spectrum. This set of lectures will be divided into five parts:

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

Examining the Viability of Phantom Dark Energy

An Acoustic Primer. Wayne Hu Astro 448. l (multipole) BOOMERanG MAXIMA Previous COBE. W. Hu Dec. 2000

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

Gravitation: Cosmology

Polarization from Rayleigh scattering

CMB Anisotropies Episode II :

What do we really know about Dark Energy?

CMB Anisotropies: The Acoustic Peaks. Boom98 CBI Maxima-1 DASI. l (multipole) Astro 280, Spring 2002 Wayne Hu

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

The cosmic background radiation II: The WMAP results. Alexander Schmah

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY

Problem Sets on Cosmology and Cosmic Microwave Background

Lecture 3+1: Cosmic Microwave Background

4 Evolution of density perturbations

Inflation and the origin of structure in the Universe

Rayleigh scattering:

Modern Cosmology / Scott Dodelson Contents

Lecture 03. The Cosmic Microwave Background

The Outtakes. Back to Talk. Foregrounds Doppler Peaks? SNIa Complementarity Polarization Primer Gamma Approximation ISW Effect

Thermal History of the Universe and the Cosmic Microwave Background. II. Structures in the Microwave Background

Cosmology and the origin of structure

Cosmology (Cont.) Lecture 19

Inflationary Cosmology and Alternatives

The Once and Future CMB

CHAPTER 3 THE INFLATIONARY PARADIGM. 3.1 The hot Big Bang paradise Homogeneity and isotropy

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

ASTR 610 Theory of Galaxy Formation Lecture 4: Newtonian Perturbation Theory I. Linearized Fluid Equations

Lecture 2. - Power spectrum of gravitational anisotropy - Temperature anisotropy from sound waves

General Relativity Lecture 20

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second

isocurvature modes Since there are two degrees of freedom in

Dark Forces and the ISW Effect

arxiv: v2 [astro-ph.co] 1 Jan 2011

Week 10: Theoretical predictions for the CMB temperature power spectrum

Lecture: Lorentz Invariant Dynamics

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova

The Cosmic Microwave Background and Dark Matter. Wednesday, 27 June 2012

Physical Cosmology 6/6/2016

Cosmology & CMB. Set6: Polarisation & Secondary Anisotropies. Davide Maino

Ringing in the New Cosmology

CMB Episode II: Theory or Reality? Wayne Hu

Astro 448 Lecture Notes Set 1 Wayne Hu

Lecture II. Wayne Hu Tenerife, November Sound Waves. Baryon CAT. Loading. Initial. Conditions. Dissipation. Maxima Radiation BOOM WD COBE

KIPMU Set 4: Power Spectra. Wayne Hu

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

Scalar perturbations of Galileon cosmologies in the mechanical approach in the late Universe

Magnetized initial conditions for CMB anisotropies

Observational signatures of holographic models of inflation

arxiv:astro-ph/ v2 22 Aug 2001

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002

Variation in the cosmic baryon fraction and the CMB

Investigation of CMB Power Spectra Phase Shifts

The physics of the cosmic microwave background

Tomography with CMB polarization A line-of-sight approach in real space

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

2 Feynman rules, decay widths and cross sections

ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set 2, (20 points in total) Problems are due at Monday,

Inflation, quantum fluctuations and cosmological perturbations

BAO AS COSMOLOGICAL PROBE- I

Really, really, what universe do we live in?

Useful Quantities and Relations

Structure formation. Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München

Université Paris Diderot. Classification of inflationary models and constraints on fundamental physics. 28 September Ph.D.

Scalar field dark matter and the Higgs field

Cosmic Microwave Background Introduction

Cosmological neutrinos

Multi-disformal invariance of nonlinear primordial perturbations

Cosmology. Lecture Scripts. Daniel Baumann concave convex

Primordial Black Holes

Production of WIMPS in early Universe

Highlights from Planck 2013 cosmological results Paolo Natoli Università di Ferrara and ASI/ASDC DSU2013, Sissa, 17 October 2013

Cosmological Structure Formation Dr. Asa Bluck

Conserved Quantities in Lemaître-Tolman-Bondi Cosmology

Probing the Dark Side. of Structure Formation Wayne Hu

Inflationary density perturbations

Scalar fields and vacuum fluctuations II

Second Order CMB Perturbations

Cosmology: An Introduction. Eung Jin Chun

80 2 Observational Cosmology L and the mean energy

Light Propagation in the Averaged Universe. arxiv:

Cosmology with moving bimetric fluids

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

The AfterMap Wayne Hu EFI, February 2003

Einstein Toolkit Workshop. Joshua Faber Apr

astro-ph/ Oct 93

Cosmological perturbations in f(r) theories

Transcription:

Theory of Cosmological Perturbations Part III CMB anisotropy

1. Photon propagation equation Definitions Lorentz-invariant distribution function: fp µ, x µ ) Lorentz-invariant volume element on momentum space: dπp) 2 dπp) = 2θp 0 )δg µν p µ p ν ) gd 4 p d 4 p = dp 0 dp 1 dp 2 dp 3 ) = 2θˆp 0 )δη ab ˆp a ˆp b )d 4 ˆp ˆp a = e a µp µ tetrad components) f and dπ are invariant under local Lorentz transformation) number of photons within dπp) crossing 3-surface dσ µ : dn rate of change in dn due to collision: Boltzmann equation [ p µ ] x + dpµ f = C[f] ; µ dv p µ dp µ dv = Γµ αβp α p β, dn = fp µ, x µ )dπp) p α dσ α C[f]dπp) p α dσ α p α = dxα dv C[f] collision term v affine parameter)

Boltzmann equation in a perturbed FLRW universe 3 perturbed metric A, β i, H ij = Oɛ)) ds 2 = a 2 η) [ 1 + 2A)dη 2 + 2β i dx i dη + γ ij + H ij )dx i dx j] a 2 η)d s 2 g µν = a 2 ḡ µν ) perturbed distribution function fp µ, x µ ) = fp 0, η) + δfp µ, x µ ) Conformal transformation null geodesics are invariant under conformal transformation) q µ = a 2 p µ = a 2dxµ dv dxµ dλ, dq µ dλ = Γ µ αβq α q β [ q µ ] x + dqµ µ dλ q µ further transformation of the momentum variables: f = a 2 C[ f] q µ ˆq 1 + A)q 0, γ i = qi q 0 ˆq photon energy seen by observer normal to η=const. a γ i directional cosine: γ ij γ i γ j = 1 + Oɛ).

4 [ q µ x + dˆq ] µ dλ ˆq + dγi f = a 2 C[ dλ γ f] i [ η + γi x + 1 dˆq i q 0 dλ ˆq s Γ i jkγ j γ k where s Γ i kj is the connection of γ ij, and dˆq dλ = d [ ] 1 + A)q 0 = q 0 d dλ dλ A + dq0 dλ + Oɛ2 ) = q 0 d dλ A Γ 0 µνq µ q ν = q 0 ) 2 [ A i γ i 1 2 ] γ i [ ] d dλ = q0 η + γi x i ] ) H ij 2β i j γ i γ j f = a2 q0c[ f] ) + Oɛ) Here we have used the fact Γ 0 µν = δ Γ 0 µν = Oɛ) with δ Γ 0 00 = A, δ Γ 0 0i = A i, δ Γ 0 ij = 1 2 H ij β i j β j i )

5 Setting f = fˆq, η) + δfˆq, γ i, x µ ), 0th order: 0th order: 1st order: η f = 0 f = fˆq). [ η + γi x s Γ i jkγ j γ k ] δf i γ i [ = A i γ i + 1 ] ) H 2 ij 2β i j γ i γ j ˆq d f + C[ f] dˆq a2ˆq Assuming thermal equilibrium at sufficiently early stage η = η i ), fˆq) = 1 eˆq/a it i) 1 T i temperature at η = η i ) Define temperature T by T = a i T i /a irrespective of thermal equilibrium or not. Then 1 fˆq) = fa q) = e q/t 1 ; q ˆq physical energy a Planck distribution even if photons become out of thermal equilibrium.

1st order: Evaluation of collision term For T m e = 0.5 MeV 5 10 9 K, electrons are non-relativistic. Thomson scattering of photons by electrons σ T = 8πre/3 2 6.7 10 25 cm 2 ): 1 q C[ f] = 3 8π n eσ T d Ω 1 + cos 2 θ 2 [ fq, γ i ) fq, γ i )] 6 q, γ ) i photon momentum after scattering d Ω solid angle sustained by γ i in electron rest frame e.r.f.) θ scattering angle in e.r.f. Let v i e) be the electron 3-velocity. Then q = q [ 1 βi + v e)i ) γ i ] Because the photon energy is unchanged under Thomson scattering, q = q = q [ 1 β i + v e)i ) γ i ]

Hence 7 fq, γ i ) = fq ) + δfq, γ i ) = fq) + q q) q f + δfq, γi ) = fq) + q q fq) ) βi + v e)i ) γ i γ i ) + δfq, γ i ) and From these, d Ω = q q 1 q C[ f] = 3 ) 2 dω = 1 + 2β i + v e)i)γ i ) dω = dω + Oɛ) dω 1 + γ k γ k ) 2 2 8π n eσ T [ q f ] q β i + v e)i )γ i γ i ) + δfq, γ ) i δfq, γ i ) = n e σ T [ δf Ω δf q f ) β i + v e)i )γ i + 34 ] q Q ijγ i γ j δf Ω = 1 δfdω 4π Q ij = 1 γ i γ j 1 4π 3 γ ij)δfdω

8 Since f = fˆq) = faq) Define q f q = ˆq df dˆq [ η + γi x s Γ i jkγ j γ k ] δf i γ i = [A i γ i + 12 ] H ij β i j β j i )γ i γ j ˆq df dˆq +an e σ T [ δf Ω δf ˆq df ) β i + v e)i )γ i + 34 ] dˆq Q ijγ i γ j and rescale the affine parameter λ as 1 ˆq d dλ d dλ Θ δf ˆq df ), dˆq [ η + γi x s Γ i jkγ j γ k i ] γ i

Then d [A dλ Θ = i γ i + 12 ] H ij β i j β j i )γ i γ j [ +an e σ T Θ Ω Θ β i + v e)i )γ i + 3 ] 4 Π ijγ i γ j 9 Π ij γ i γ j 1 3 γ ij)θ Ω Equation for Θ is independent of the photon energy q. If we consider a temperature fluctuation in f = e q/t 1) 1 by setting T T + δt δ T f = ft + δt ) ft ) = ˆq df ) δt dˆq T δt T = δ T f ˆq df ) dˆq Θ = δf ˆq df ). dˆq We may regard Θ as the temperature fluctuation.

10 2. Gauge-invariant formulation Gauge transformation induced by x µ = x µ + ξ µ, ξ µ = T, L i ): This gives p µ p µ = xµ x ν pν = p µ + ξ µ,νp ν ˆq ˆq = 1 + Ā x)) q = a2 η)1 + Ā x)) p0 = a 2 η) Hence, from f + δf = f + δf, ) ) 1 + 2 1 a a T + Ax) a p a T T 0 + T ν),νp = ˆq 1 + HT + T i γ i) ; H a a δf = δf ˆq df dˆq [ HT + T i γ i] Θ = Θ + H T + T i γ i.

For scalar-type metric perturbations, in addition to A, 1 2 HS ij = Rγ ij + H T ij, β i = B i, v x)i = U x) i ; x =electron, photon, etc.. These transform under a gauge transformation ξ µ = T, L i ), 11 Ā = A T H T, B = B + T + L R = R H T, HT = H T + L, Ū x = U x) + L. A convenient choice of gauge-invariant variables Ψ = A σ H σ ; σ = H T B, Φ = R H σ, V x) = U x) H T, Θ s = Θ + H σ + σ i γ i These correspond to perturbations variables defined in Newton logitudinal) slicing for which σ = 0. In terms of these gauge-invariant variables, d dλ Θ s = Φ + Ψ i γ i + 1 2 HT ij γ i γ j ) + an e σ T [ Θ s Ω Θ s + V e) i γ i + 34 ] Π ijγ i γ j Hij T tensor GW) perturbation, Π ij = γ i γ j 13 ) γij Θ is gauge-invariant. Ω

Qualitative derivation of CMB anisotropy Before recombination an e σ T H = n eσ T H 6 104n e T Ω b h 2 n b 1 ev Θ s = 1 ) H 4 s,r + V b i γ i + O n e σ T ) [ 1 + 10Ω b h 2 T 1 ev )] 1/2 1 where s,r = δρ/ρ = 4δT/T on Newton slices. V b = V e) ) is the baryon velocity potential. Thus, Θ s at the last scattering surface is approximately Θ s = 1 4 s,r + V b i γ i s,r is related to the radiation density perturbation on the matter comoving slices, r, as s,r = r 4H V where V is the matter shear velocity potential. Neglecting the difference between V and V b, Θ s = 1 4 r H V + V i γ i. 12

After recombination For dust-dominated universe, Φ = Ψ. Then, ignoring H T ij tensor) for the moment, d dλ Θ s = Φ Ψ i γ i = 2Ψ d dλ Ψ d dλ Θ s + Ψ) = 2Ψ Integrating this along a photon path to the present λ = λ 0 ) gives 13 Θ s + Ψ)λ 0 ) = Θ s + Ψ)λ d ) + λ0 λ d 2Φ dλ x η dec ) γ o x µ λ d ) = η d, x i η d )) x µ λ 0 ) = η 0, 0) x i η d ) = γ i η 0 η d ) Last Scattering Surface

Temperature anisotropy measured on the matter comoving frame: 14 Θ c = Θ s + H V + V i γ i Therefore, recovering tensor contribution, we obtain Θ c λ 0 ) = Ψ H V V i γ i) 0 + Ψ H V + V i γ i + 1 ) λ0 4 r + 2Ψ 12 ) HTij γ i γ j dλ d λ d Ψ H V ) 0 V i γ i ) 0 Monopole: unobservable. Dipole: our peculiar motion relative to CMB rest frame. Ψ H V ) d Sachs-Wolfe effect. V i γ i) Doppler effect. d ) 1 4 r Intrinsic temperature fluctuation at LSS. d λ0 λ0 2 Ψ dλ Integrated SW effect. 12 ) HTij γ i γ j dλ Tensor effect. λ d λ d

Large angular scale anisotropy 15 Large angle small wavenumber k: θ 10 2 1 ) k 1 superhorizon scale at LSS ah For adiabatic perturbations, at LSS assuming dust-dominance), HV = 2 3 Ψ, r 3 4 tot 8 ) 9 Ψ k2 k 2 a 2 H Ψ for 1 2 a 2 H 2 Θ ad = 1 3 Ψ d + ISW d For isocurvature perturbations, ) δρ S 3 ) δρ ρ dust 4 ρ Θ iso = 2Ψ d + ISW rad at η 0, 1 4 r 1 3 S = 5 3 Ψ at η = η d. SW part of Θ iso is enhanced by factor 6 relative to Θ ad Stringent constraint on isocurvature perturbations

3. Cosmological parameter dependence 16 Observed temperature anisotropy spectrum by WMAP. CMB anisotropy depends on Nature of primordial perturbation spectrum spectral index, ad or iso, etc...) Physics at decoupling time baryon density, CDM density, etc...) Evolution of the universe after decoupling cosmological constant, dark energy, etc...) Spatial geometry of the universe flat, closed or open)

Physics at decoupling is determined by the values of ρ b and ρ CDM. 17 Peaks are caused by accoustic oscillations of the baryon-photon fluid: Ψ HV F ρ b, ρ m ) cosc s kη d ) c s sound velocity) 1) Baryon and CDM density in terms of cosmological parameters: ρ x ) d = 1 + z d ) 3 ρ x ) 0 = 1 + z d ) 3 ρ cr ) 0 Ω x Ω b h 2 x = bbaryon) or CDM Thus, physics at decoupling is the same for the same values of Ω b h 2, Ω CDM h 2 ). degeneracy in CMB anisotropy. Evolution after decoupling is affected by ρ Λ cosmological constant) ρ Λ is important at z O1): Late time ISW effect. Larger Ω Λ h 2 causes larger power on large angular scales small l). ρ Λ causes increase in the conformal distance to LSS: η 0 η d increases. The same physical length on LSS is sustained by a smaller angle. Dependence on spatial geometry For open space, the same physical length on LSS is sustained by a smaller angle.

Increase in Ω Λ decrease in Ω tot slight degeneracy 18 Geometrical degeneracy

CMB degeneracy of cosmological parameters Agular diameter distance to LSS: d A z) = 1 H 0 sinh k 0 Rz) 1 + z) k 0 ; Rz) = 1+z 1 dy Ωm y 3 + Ω Λ k 0 y 2 19 Ω m = Ω b + Ω CDM, k 0 curvature parameter : 1 + k 0 = Ω m + Ω Λ θ = r phys d A h fω d, Ω vac ) 4+1) cosmological parameters: h, Ω b, Ω CDM, Ω Λ, n s n s spectral index) h Position of the first peak: θ peak 1 fω m, Ω Λ ) Height of the first peak: height h 1 Ω b h 2, Ω CDM h 2 ) Height of the second peak: height h 2 Ω b h 2, Ω CDM h 2 ) Global temperature anisotropy spectral shape: determination of n s. WMAP determined Ω b h 2, Ω CDM h 2 and n s. Ω b h 2 = 0.024 ± 0.001, Ω CDM h 2 = 0.012 ± 0.02, n s = 0.99 ± 0.04 5 parameters 4 observational constraints = 1 degree of degeneracy

Degeneracy line projected on Ω m, Ω Λ ) plane 20