Dark Matter WIMP and SuperWIMP

Similar documents
New Physics beyond the Standard Model: from the Earth to the Sky

DARK MATTERS. Jonathan Feng University of California, Irvine. 2 June 2005 UCSC Colloquium

COSMOLOGY AT COLLIDERS

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

MICROPHYSICS AND THE DARK UNIVERSE

LHC Impact on DM searches

RECENT PROGRESS IN SUSY DARK MATTER

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003

Measuring Dark Matter Properties with High-Energy Colliders

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

SUSY AND COSMOLOGY. Jonathan Feng UC Irvine. SLAC Summer Institute 5-6 August 2003

RECENT DEVELOPMENTS IN PARTICLE DARK MATTER

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

Dark Matter Implications for SUSY

Dark Matter in Particle Physics

Overview of Dark Matter models. Kai Schmidt-Hoberg

SUPERSYMMETRIC DARK MATTER

Gravitino LSP as Dark Matter in the Constrained MSSM

SUPERSYMETRY FOR ASTROPHYSICISTS

Theoretical Aspects on Dark Matter and Its Detection

Project Paper May 13, A Selection of Dark Matter Candidates

THE DARK UNIVERSE. Jonathan Feng Department of Physics and Astronomy. UCI Distinguished Faculty Lecture 26 October 2004

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky

Kaluza-Klein Dark Matter

Week 3 - Part 2 Recombination and Dark Matter. Joel Primack

SuperWeakly Interacting Massive Particle Dark Matter

Cosmology/DM - I. Konstantin Matchev

Staus at the LHC. Koichi Hamaguchi (Tokyo U.) based on the works. KH, M.M.Nojiri, A.de Roeck (hep-ph/ );

Search for SUperSYmmetry SUSY

Antiproton Limits on Decaying Gravitino Dark Matter

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Models of New Physics for Dark Matter

LHC searches for dark matter.! Uli Haisch

SUSY Phenomenology & Experimental searches

Beyond the SM: SUSY. Marina Cobal University of Udine

Dark matter: evidence and candidates

Lecture 18 - Beyond the Standard Model

Dark Matter motivated SUSY collider signatures

Indirect Searches for Gravitino Dark Matter

Direct Detection Rates of Neutralino WIMP in MSSM

Beyond the Standard Model Phenomenology. DOE Review 2008 Progress Report. Shufang Su U. of Arizona

The WIMPless Miracle and the DAMA Puzzle

Astronomy 182: Origin and Evolution of the Universe

Introduction Motivation WIMP models. WIMP models. Sebastian Belkner. University of Bonn - University of Cologne. June 24, 2016

The Dark Matter Puzzle and a Supersymmetric Solution. Andrew Box UH Physics

The Story of Wino Dark matter

Searches for Physics Beyond the Standard Model. Jay Wacker. APS April Meeting SLAC. A Theoretical Perspective. May 4, 2009

DARK MATTER MEETS THE SUSY FLAVOR PROBLEM

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

SUSY at Accelerators (other than the LHC)

Dark Matter from Decays

SUSY searches at the LHC * and Dark Matter

Neutralino Dark Matter and SUSY Spectroscopy. M. E. Peskin June 2004 YITP

Supersymmetry and other theories of Dark Matter Candidates

Particle Physics and Cosmology II: Dark Matter

Dark matter in split extended supersymmetry

Astroparticle Physics and the LC

Antiproton Limits on Decaying Gravitino Dark Matter

SUSY at Accelerators (other than the LHC)

Supersymmetry in Cosmology

Dark Matter Experiments and Searches

Is SUSY still alive? Dmitri Kazakov JINR

Supersymmetric dark matter with low reheating temperature of the Universe

The Linear Collider and the Preposterous Universe

New Physics at the TeV Scale and Beyond Summary

components Particle Astrophysics, chapter 7

Dark matter and missing energy - what is there apart from SUSY?

PHY323:Lecture 11 SUSY and UED Higgs and Supersymmetry The Neutralino Extra Dimensions How WIMPs interact

Why SUSY? Key Words LECTURE OUTLINE. Between Supersymmetry and Dark Matter Teruki Kamon KNU/TAMU. Probing the Connection.

Neutrinos and DM (Galactic)

Signals from Dark Matter Indirect Detection

TeV Particle Physics and Physics Beyond the Standard Model

Astroparticle Physics at Colliders

String Theory in the LHC Era

Supersymmetry and Dark Matter

Dark Matter Searches. Marijke Haffke University of Zürich

Ingredients to this analysis

Surprises in (Inelastic) Dark Matter

Dark Matter and Dark Energy components chapter 7

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011

Cosmological Constraint on the Minimal Universal Extra Dimension Model

Constraining minimal U(1) B L model from dark matter observations

Big Bang Nucleosynthesis

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Dark Matter Decay and Cosmic Rays

Supersymmetry Basics. J. Hewett SSI J. Hewett

Revisiting gravitino dark matter in thermal leptogenesis

The Role of the ILC in the Study of Cosmic Dark Matter

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Supersymmetry at the ILC

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29

Search for exotic process with space experiments

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

BSM physics and Dark Matter

XI. Beyond the Standard Model

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

Transcription:

Dark Matter WIMP and SuperWIMP Shufang Su U. of Arizona S. Su Dark Matters

Outline Dark matter evidence New physics and dark matter WIMP candidates: neutralino LSP in MSSM direct/indirect DM searches, collider studies synergy between cosmology and particle physics superwimp S. Su Dark Matters 2

We are living through a revolution in our understanding of the Universe on the largest scales For the first time in history, we have a complete picture of the Universe S. Su Dark Matters 3

DM evidence: rotation curves Rotation curves of galaxies and galactic clusters NGC 2403 Constrain Ω m Ω i =ρ i /ρ c S. Su Dark Matters 4

DM evidence: rotation curves Rotation curves of galaxies and galactic clusters NGC 2403 Constrain Ω m V c 1/r 1/2 Ω i =ρ i /ρ c S. Su Dark Matters 4

DM evidence: rotation curves Rotation curves of galaxies and galactic clusters V c const NGC 2403 Constrain Ω m V c 1/r 1/2 Ω i =ρ i /ρ c S. Su Dark Matters 4

DM evidence: rotation curves Rotation curves of galaxies and galactic clusters V c const NGC 2403 Dark matter in halo Constrain Ω m V c 1/r 1/2 Ω i =ρ i /ρ c S. Su Dark Matters 4

Dark matter evidence: supernovae Supernovae Constrain Ω m Ω Λ S. Su Dark Matters 5

Dark matter evidence: CMB Cosmic Microwave Background Constrain Ω Λ +Ω m then now S. Su Dark Matters 6

Synthesis Ω 0.5% Ω 0.5% Ω 3% Ω=23% ± 4% Ω=73% ± 4% Remarkable agreement Remarkable precision (~10%) S. Su Dark Matters 7

Synthesis Ω 0.5% Ω 0.5% Ω 3% Ω=23% ± 4% Ω=73% ± 4% Remarkable agreement Remarkable precision (~10%) S. Su Dark Matters 7

Dark matter vs. dark energy We know how much, but no idea what it is. Dark matter No known particles contribute Probably tied to m weak 100 GeV Several compelling solutions Dark energy All known particles contribute Probably tied to m Planck 10 19 GeV No compelling solutions S. Su Dark Matters 8

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H SM is a very successful theoretical framework describes all experimental observations to date S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H Not for cosmology observations Dark Matter Cosmology constant Baryon asymmetry S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H CDM requirements S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H CDM requirements Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H CDM requirements Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H CDM requirements Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H CDM requirements Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H CDM requirements Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H CDM requirements Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H CDM requirements Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting S. Su Dark Matters 9

Standard Model Quarks Leptons Gauge boson (force carrier) Higgs u c t d s b ν e ν µ ν τ e µ τ γ W ±,Z g H CDM requirements Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting No good candidates for CDM in SM S. Su Dark Matters 9

New physics beyond SM DM problem provide precise, unambiguous evidence for new physics Independent motivation for new physics in particle physics S. Su Dark Matters 10

New physics beyond SM SM is an effective theory below some energy scale Λ TeV S. Su Dark Matters 11

New physics beyond SM SM is an effective theory below some energy scale Λ TeV Hierarchy problem S. Su Dark Matters 11

New physics beyond SM SM is an effective theory below some energy scale Λ TeV Hierarchy problem m EW 10 2 GeV S. Su Dark Matters 11

New physics beyond SM SM is an effective theory below some energy scale Λ TeV Hierarchy problem m plank 10 19 GeV m EW 10 2 GeV S. Su Dark Matters 11

New physics beyond SM SM is an effective theory below some energy scale Λ TeV Hierarchy problem m plank 10 19 GeV m EW 10 2 GeV S. Su Dark Matters 11

New physics beyond SM SM is an effective theory below some energy scale Λ TeV Hierarchy problem m plank 10 19 GeV m EW 10 2 GeV S. Su Dark Matters 11

New physics beyond SM SM is an effective theory below some energy scale Λ TeV Hierarchy problem Naturalness problem m plank 10 19 GeV m EW 10 2 GeV S. Su Dark Matters 11

New physics beyond SM SM is an effective theory below some energy scale Λ TeV Hierarchy problem m plank 10 19 GeV Naturalness problem (m H 2 ) physical (100 GeV) 2 H = (m 2 H ) 0 (1019 GeV)2 + Λ 2 (10 19 GeV) 2 m EW 10 2 GeV S. Su Dark Matters 11

New physics beyond SM SM is an effective theory below some energy scale Λ TeV Hierarchy problem m plank 10 19 GeV Naturalness problem (m H 2 ) physical (100 GeV) 2 H = (m 2 H ) 0 (1019 GeV)2 + Λ 2 (10 19 GeV) 2 m EW 10 2 GeV precise cancellation up to 10 34 order S. Su Dark Matters 11

New physics beyond SM SM is an effective theory below some energy scale Λ TeV Hierarchy problem m plank 10 19 GeV Naturalness problem (m H 2 ) physical (100 GeV) 2 H = (m 2 H ) 0 (1019 GeV)2 + Λ 2 (10 19 GeV) 2 m EW 10 2 GeV precise cancellation up to 10 34 order New physics to protect electroweak scale new symmetry: supersymmetry new space dimension: extradimension S. Su Dark Matters 11

Dark matter in new physics Dark Matter: new stable particle in many theories, dark matter is easier to explain than no dark matter there are usually many new weak scale particle constraints (proton decay, large EW corrections) discrete symmetry stability good dark matter candidate S. Su Dark Matters 12

Dark matter candidates Many ideas of DM candidates: WIMP primodial black holes axions warm gravitinos Q balls wimpzillas superwimps selfinteracting particles selfannihilating particles fuzzy dark matter branons mass and interaction strengths span many, many orders of magnitude S. Su Dark Matters 13

Dark matter candidates WIMP superwimps S. Su Dark Matters 13

Dark matter candidates WIMP superwimps appear in particle physics models motivated independently by attempts to solve Electroweak Symmetry Breaking relic density are determined by m pl and m weak naturally around the observed value no need to introduce and adjust new energy scale S. Su Dark Matters 13

WIMP Boltzmann equation expansion χχ ff ff χχ S. Su Dark Matters 14

WIMP Boltzmann equation Thermal expansion equilibrium χχ ff ff χχ χχ ff WIMP S. Su Dark Matters 14

WIMP Boltzmann equation expansion χχ ff ff χχ Universe cools: n=n EQ e m/t WIMP S. Su Dark Matters 14

WIMP Boltzmann equation expansion χχ ff ff χχ Freeze out, n/s const WIMP S. Su Dark Matters 14

WIMP Boltzmann equation expansion χχ ff ff χχ S. Su Dark Matters 14

WIMP miracle WIMP: Weak Interacting Massive Particle m WIMP m weak σ an α weak 2 m weak 2 Ω h 2 0.3 naturally around the observed value S. Su Dark Matters 15

Minimal Supersymmetric Standard Model (MSSM) SM particle Spin differ by 1/2 superpartner Squarks sleptons Gauginos Higgsino u c t d s b ν e ν µ ν τ e µ τ B 0 W ±,W 0 g (H u +,H u 0 ), (H d 0, H d ) Supersymmetry breaking, m TeV S. Su Dark Matters 16

Minimal Supersymmetric Standard Model (MSSM) SM particle Spin differ by 1/2 superpartner Squarks sleptons Gauginos Higgsino u c t d s b ν e ν µ ν τ e µ τ B 0 W ±,W 0 g (H u +,H u 0 ), (H d 0, H d ) CDM requirements Stable Nonbaryonic Neutral Cold Correct density gravitational interacting Supersymmetry breaking, m TeV S. Su Dark Matters 16

Minimal Supersymmetric Standard Model (MSSM) SM particle Spin differ by 1/2 superpartner Squarks sleptons Gauginos Higgsino u c t d s b ν e ν µ ν τ e µ τ B 0 W ±,W 0 g (H u +,H u 0 ), (H d 0, H d ) CDM requirements Stable Nonbaryonic Neutral Cold Correct density gravitational interacting Supersymmetry breaking, m TeV S. Su Dark Matters 16

Minimal Supersymmetric Standard Model (MSSM) SM particle Spin differ by 1/2 superpartner Squarks sleptons Gauginos Higgsino u c t d s b ν e ν µ ν τ e µ τ B 0 W ±,W 0 g (H u +,H u 0 ), (H d 0, H d ) CDM requirements Stable Nonbaryonic Neutral Cold Correct density gravitational interacting Supersymmetry breaking, m TeV S. Su Dark Matters 16

Minimal Supersymmetric Standard Model (MSSM) SM particle Spin differ by 1/2 superpartner Squarks sleptons Gauginos Higgsino u c t d s b ν e ν µ ν τ e µ τ B 0 W ±,W 0 g (H u +,H u 0 ), (H d 0, H d ) CDM requirements Stable Nonbaryonic Neutral Cold Correct density gravitational interacting Supersymmetry breaking, m TeV S. Su Dark Matters 16

Minimal Supersymmetric Standard Model (MSSM) SM particle Spin differ by 1/2 superpartner Squarks sleptons Gauginos Higgsino u c t d s b ν e ν µ ν τ e µ τ B 0 W ±,W 0 g (H u +,H u 0 ), (H d 0, H d ) CDM requirements Stable Nonbaryonic Neutral Cold m > 45 GeV Correct density gravitational interacting Supersymmetry breaking, m TeV S. Su Dark Matters 16

Minimal Supersymmetric Standard Model (MSSM) SM particle Spin differ by 1/2 superpartner Squarks sleptons Gauginos Higgsino u c t d s b ν e ν µ ν τ e µ τ B 0 W ±,W 0 g (H u +,H u 0 ), (H d 0, H d ) CDM requirements Stable Nonbaryonic Neutral Cold m > 45 GeV Correct density weak interaction gravitational interacting Supersymmetry breaking, m TeV S. Su Dark Matters 16

Minimal Supersymmetric Standard Model (MSSM) SM particle Spin differ by 1/2 superpartner Squarks sleptons Gauginos Higgsino u c t d s b ν e ν µ ν τ e µ τ B 0 W ±,W 0 g (H u +,H u 0 ), (H d 0, H d ) CDM requirements Stable Nonbaryonic Neutral Cold m > 45 GeV Correct density weak interaction gravitational interacting Supersymmetry breaking, m TeV S. Su Dark Matters 16

Neutralino LSP as DM new weak scale particle constraints discrete symmetry stability dark matter candidate S. Su Dark Matters 17

Neutralino LSP as DM new weak scale particle superpartners constraints discrete symmetry stability dark matter candidate S. Su Dark Matters 17

Neutralino LSP as DM new weak scale particle superpartners constraints proton decay discrete symmetry stability dark matter candidate S. Su Dark Matters 17

Neutralino LSP as DM new weak scale particle superpartners constraints proton decay discrete symmetry Rparity: SM particle + superpartner stability dark matter candidate S. Su Dark Matters 17

Neutralino LSP as DM new weak scale particle superpartners constraints proton decay discrete symmetry stability Rparity: SM particle + superpartner lightest supersymmetric particle (LSP) stable LSP SM particle, LSP super particle dark matter candidate S. Su Dark Matters 17

Neutralino LSP as DM new weak scale particle superpartners constraints proton decay discrete symmetry stability Rparity: SM particle + superpartner lightest supersymmetric particle (LSP) stable LSP SM particle, LSP super particle dark matter candidate ~ B 0 ~, W 0 ~, H 0 ~ 0 d, H u Superpartner of Superpartner of gauge bosons Higgs bosons neutralinos χ 0 i, i=1 4 mass eigenstates S. Su Dark Matters 17 Neutralino LSP: χ 1 0 as Dark Matter

Neutralino relic density 0.1 Ω χ h 2 0.3 (prewmap) Cosmology excludes much of the parameter space CMSSM Ω χ too big cosmology focuses attention on particular regions Ω χ just right S. Su Dark Matters 18

Neutralino relic density 0.1 Ω χ h 2 0.3 (prewmap) Cosmology excludes much of the parameter space CMSSM Ω χ too big cosmology focuses attention on particular regions Ω χ just right S. Su Dark Matters 18

Neutralino relic density 0.1 Ω χ h 2 0.3 (prewmap) Cosmology excludes much of the parameter space CMSSM Ω χ too big cosmology focuses attention on particular regions Ω χ just right S. Su Dark Matters 18

Neutralino relic density 0.1 Ω χ h 2 0.3 (prewmap) Cosmology excludes much of the parameter space CMSSM Ω χ too big cosmology focuses attention on particular regions Ω χ just right S. Su Dark Matters 18

Neutralino relic density 0.1 Ω χ h 2 0.3 (prewmap) Cosmology excludes much of the parameter space CMSSM Ω χ too big cosmology focuses attention on particular regions Ω χ just right S. Su Dark Matters 18

Dark matter detection DM f DM f DM annihilation Ω1/<σv> Not overclose universe Efficient annihilation then S. Su Dark Matters 19

Dark matter detection DM DM DM annihilation f f Cross symmetry DM f DM f Ω1/<σv> DM scattering Not overclose universe Efficient annihilation then S. Su Dark Matters 19

Dark matter detection DM DM DM annihilation f f Cross symmetry DM f DM f Ω1/<σv> Not overclose universe Efficient annihilation then DM scattering Efficient scattering now direct DM direction S. Su Dark Matters 19

Dark matter detection DM DM DM annihilation f f Cross symmetry DM f DM f Ω1/<σv> Not overclose universe Efficient annihilation then DM scattering Efficient scattering now direct DM direction Efficient annihilation now indirect DM direction S. Su Dark Matters 19

Direct detection DM detector S. Su Dark Matters 20

Direct detection DM Measure nuclear recoil energy detector S. Su Dark Matters 20

Direct detection DM Measure nuclear recoil energy detector S. Su Dark Matters 20

Direct detection DM Measure nuclear recoil energy detector Number of target nuclei in detector S. Su Dark Matters 20

Direct detection DM Measure nuclear recoil energy detector Number of target nuclei in detector Local WIMP density (astro physics) S. Su Dark Matters 20

Direct detection DM Measure nuclear recoil energy detector Number of target nuclei in detector scattering cross section (particle physics) Local WIMP density (astro physics) S. Su Dark Matters 20

Direct detection DM Measure nuclear recoil energy detector Number of target nuclei in detector scattering cross section (particle physics) Local WIMP density (astro physics) elastic scattering inelastic scattering: measure ionization, photon, spin dependent scattering spin independent scattering: dominant for heavy atom target S. Su Dark Matters 20

Direct detection Spin!independent cross section [cm 2 ] 10!41 Baltz Gondolo 2004 Ruiz et al. 2007 95% CL Ruiz et al. 2007 68% CL CDMS II 1T+2T Ge Reanalysis XENON10 2007 CDMS II 2008 Ge CDMS II Ge combined 10!42 10!43 10!44 10 1 10 2 10 3 WIMP mass [GeV/c 2 ] CDMS COUPP S. Su Dark Matters 21

Direct detection Spin!independent cross section [cm 2 ] 10!41 Baltz Gondolo 2004 Ruiz et al. 2007 95% CL Ruiz et al. 2007 68% CL CDMS II 1T+2T Ge Reanalysis XENON10 2007 CDMS II 2008 Ge CDMS II Ge combined 10!42 10!43 10!44 10 1 10 2 10 3 WIMP mass [GeV/c 2 ] CDMS DAMA result? S. Su Dark Matters 21 COUPP

Indirect detection DM DM Γ A n DM 2 detector S. Su Dark Matters 22

Indirect detection DM DM Γ A n DM 2 Dark Matter annihilates detector recipe in (amplifier) to, a place some particles which are detected by. an experiment S. Su Dark Matters 22

Dark Matter annihilates recipe in center of the sun to neutrinos, a place some particles which are detected by AMANDA, ICECUBE. an experiment earth ν µ Dark matter density in the sun, capture rate S. Su Dark Matters 23

Indirect detection: neutrino MSSM icecube Hooper and Wang (2003) S. Su Dark Matters 24

Dark Matter annihilates in galactic center to photons, recipe a place some particles which are detected by GLAST, HESS. an experiment HESS Dark matter density in the center of the galaxy S. Su Dark Matters 25

Indirect detection: gamma ray MSSM EGRET GLAST Hooper and Wang (2003) S. Su Dark Matters 26

Dark Matter annihilates in the halo to positions, a place some particles recip e which are detected by AMS, HEAT, PAMELA. an experiment Dark matter density profile in the halo AMS S. Su Dark Matters 27

Indirect detection: positron! "#$%&'()'*%&(+*,(.$$(! 1%#',)#(22 e + Mirko Boezio, INFN Trieste Fermilab, 2008/05/02 S. Su Dark Matters 28

Collider study of dark matter Can study those regions at colliders Tevatron LHC p p p p ILC Now 2008 Precise determination of new particle mass and coupling Determine DM mass, relic density S. Su Dark Matters 29

Neutralino DM in msugra Choose four representative points for detailed study Baer et. al. ISAJET Gondolo et. al. DarkSUSY Belanger et. al. MicroMEGA Feng et. al. ILC cosmology working group S. Su Dark Matters 30

Relic density determination: LCC1 result: ΔΩ χ /Ω χ = 1.0% LCC1 Battaglia (2005) S. Su Dark Matters 31

Relic density determination: LCC1 result: ΔΩ χ /Ω χ = 1.0% WMAP (current) LCC1 Battaglia (2005) S. Su Dark Matters 31

Relic density determination: LCC1 result: ΔΩ χ /Ω χ = 1.0% WMAP (current) Planck (~2010) LCC1 Battaglia (2005) S. Su Dark Matters 31

Relic density determination: LCC1 result: ΔΩ χ /Ω χ = 1.0% LHC ( best case scenario ) WMAP (current) Planck (~2010) LCC1 Battaglia (2005) S. Su Dark Matters 31

Relic density determination: LCC1 result: ΔΩ χ /Ω χ = 1.0% ILC LHC ( best case scenario ) WMAP (current) Planck (~2010) LCC1 Battaglia (2005) S. Su Dark Matters 31

Comparison of prelhc SUSY searches LHC search DM search PreWMAP PostWMAP DM searches are complementary to collider searches When combined, entire cosmologically attractive region will be explored before LHC ( 2008 ) S. Su Dark Matters 32

Synergy S. Su Dark Matters 33

Synergy Collider Inputs Weakscale Parameters DM Annihilation DMN Interaction S. Su Dark Matters 33

Synergy Collider Inputs Weakscale Parameters DM Annihilation DMN Interaction Relic Density Indirect Detection Direct Detection Astrophysical and Cosmological Inputs S. Su Dark Matters 33

Synergy parts per mille agreement for Ω χ discovery of dark matter Collider Inputs Weakscale Parameters DM Annihilation DMN Interaction Relic Density Indirect Detection Direct Detection Astrophysical and Cosmological Inputs S. Su Dark Matters 33

Synergy parts per mille agreement for Ω χ discovery of dark matter Collider Inputs Weakscale Parameters local DM density and velocity profile DM Annihilation DMN Interaction Relic Density Indirect Detection Direct Detection Astrophysical and Cosmological Inputs S. Su Dark Matters 33

Synergy parts per mille agreement for Ω χ discovery of dark matter Collider Inputs Weakscale Parameters local DM density and velocity profile DM Annihilation DMN Interaction Relic Density Indirect Detection Direct Detection Astrophysical and Cosmological Inputs eliminate particle physics uncertainty do real astrophysics S. Su Dark Matters 33

Alternative dark matter All of the signals rely on DM having EW interactions. Is this required? S. Su Dark Matters 34

Alternative dark matter All of the signals rely on DM having EW interactions. NO! CDM requirements Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting (much weaker than electroweak) Is this required? S. Su Dark Matters 34

Alternative dark matter All of the signals rely on DM having EW interactions. NO! CDM requirements Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting (much weaker than electroweak) Is this required? S. Su Dark Matters 34

Alternative dark matter All of the signals rely on DM having EW interactions. Is this required? NO! CDM requirements But the relic density argument strongly prefers weak interactions. Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting (much weaker than electroweak) S. Su Dark Matters 34

Alternative dark matter All of the signals rely on DM having EW interactions. Is this required? NO! CDM requirements But the relic density argument strongly prefers weak interactions. Stable Nonbaryonic Neutral Cold (massive) Correct density Gravitational interacting (much weaker than electroweak) Ω DM σ 1 (gravitational coupling) 2 σ too small Ω DM too big overclose the Universe S. Su Dark Matters 34

superwimp WIMP superwimp + SM particles Feng, Rajaraman and Takayama (2003) Feng, Rajaraman, Takayama (2003); Bi, Li, Zhang (2003); Ellis, Olive, Santoso, Spanos (2003); Wang, Yang (2004); Feng, Su, Takayama (2004); Buchmuller, hamaguchi, Ratz, Yanagida (2004); Roszkowski, Ruiz de Austri, Choi (2004); Brandeburg, Covi, hamaguchi, Roszkowski, Steffen (2005);... S. Su Dark Matters 35

superwimp WIMP superwimp + SM particles Feng, Rajaraman and Takayama (2003) WIMP S. Su Dark Matters 35

superwimp WIMP superwimp + SM particles Feng, Rajaraman and Takayama (2003) 10 4 s < t < 10 8 s WIMP S. Su Dark Matters 35

superwimp WIMP superwimp + SM particles Feng, Rajaraman and Takayama (2003) 10 4 s < t < 10 8 s WIMP S. Su Dark Matters 35

superwimp WIMP superwimp + SM particles Feng, Rajaraman and Takayama (2003) 10 4 s < t < 10 8 s SWIMP SM S. Su Dark Matters 35

superwimp WIMP superwimp + SM particles Feng, Rajaraman and Takayama (2003) 10 4 s < t < 10 8 s SWIMP SM S. Su Dark Matters 35

superwimp WIMP superwimp + SM particles Feng, Rajaraman and Takayama (2003) 10 4 s < t < 10 8 s S. Su Dark Matters 35

superwimp WIMP superwimp + SM particles Feng, Rajaraman and Takayama (2003) 10 4 s < t < 10 8 s superwimp e.g. Gravitino LSP LKK graviton WIMP neutral charged S. Su Dark Matters 35

superwimp in SUSY SUSY case WIMP superwimp + SM particles S. Su Dark Matters 36

superwimp in SUSY SUSY case WIMP superwimp + SM particles Charged slepton Superpartner of lepton S. Su Dark Matters 36

superwimp in SUSY SUSY case WIMP superwimp + SM particles Charged slepton Superpartner of lepton Gravitino Superpartner of graviton S. Su Dark Matters 36

superwimp in SUSY SUSY case WIMP superwimp + SM particles Charged slepton Superpartner of lepton Gravitino Superpartner of graviton EM, had. cascade change CMB spectrum change light element abundance predicted by BBN Strong constraints! S. Su Dark Matters 36

superwimp in SUSY SUSY case WIMP superwimp + SM particles Charged slepton Superpartner of lepton Gravitino Superpartner of graviton superwimp EM, had. cascade WIMP 1 m pl change CMB spectrum change light element SM particle abundance predicted Decay lifetime m pl2 /m~ 3 G by BBN Strong constraints! S. Su Dark Matters 36

Neutralino LSP vs. Gravitino LSP WIMP SuperWIMP G ~ χ, ~ ~ l χ, ~ ~ l LSP LSP G ~ S. Su Dark Matters 37

stau NLSP 200 GeV δm 400 1500 GeV m~ G 200 GeV Feng, SS and Takayama (2004) fix Ω~ G = 0.23 S. Su Dark Matters 38

stau NLSP Feng, SS and Takayama (2004) fix Ω~ G = 0.23 200 GeV δm 400 1500 GeV m~ G 200 GeV solve 7 Li anomaly S. Su Dark Matters 38

msugra Ellis et. al., hepph/0312262 BBN EM constraints only Usual WIMP allowed region Stau NLSP superwimp allowed region S. Su Dark Matters 39

NLSP NLSP NLSP NLSP NLSP S. Su Dark Matters 40

SM ~ G SM ~ G SM ~ G SM ~ G SM ~ G S. Su Dark Matters 40

SM SM SM SM SM S. Su Dark Matters 40

Decay life time SM particle energy/angular distribution m~ G m pl SM SM SM SM SM S. Su Dark Matters 40

Decay life time SM particle energy/angular distribution m~ G m pl SM Probes gravity in a particle physics experiments! SM SM BBN, CMB in the lab SM SM Precise test of supergravity: gravitino is a graviton partner S. Su Dark Matters 40

Decay life time SM particle energy/angular distribution m~ G m pl SM Probes gravity in a particle physics experiments! SM SM BBN, CMB in the lab SM SM Precise test of supergravity: gravitino is a graviton partner How to trap slepton? S. Su Dark Matters 40

Decay life time SM particle energy/angular distribution m~ G m pl SM Probes gravity in a particle physics experiments! SM SM BBN, CMB in the lab SM SM Precise test of supergravity: gravitino is a graviton partner How to trap slepton? Hamaguchi, kuno, Nakaya, Nojiri, (2004) Feng and Smith, (2004) De Roeck et. al., (2005) S. Su Dark Matters 40

slepton trapping Feng and Smith, hepph/0409278 Slepton could live for a year, so can be trapped then moved to a quiet environment to observe decays S. Su Dark Matters 41

slepton trapping Feng and Smith, hepph/0409278 Slepton could live for a year, so can be trapped then moved to a quiet environment to observe decays LHC: 10 6 slepton/yr possible, but most are fast. Catch 100/yr in 1 kton water S. Su Dark Matters 41

slepton trapping Feng and Smith, hepph/0409278 Slepton could live for a year, so can be trapped then moved to a quiet environment to observe decays LHC: 10 6 slepton/yr possible, but most are fast. Catch 100/yr in 1 kton water LC: tune beam energy to produce slow sleptons, can catch 1000/yr in 1 kton water S. Su Dark Matters 41

Conclusion S. Su Dark Matters 42

Conclusion We now know the composition of the Universe S. Su Dark Matters 42

Conclusion We now know the composition of the Universe No known particle in the SM can be DM S. Su Dark Matters 42

Conclusion We now know the composition of the Universe No known particle in the SM can be DM precise, unambiguous evidence for new physics S. Su Dark Matters 42

Conclusion We now know the composition of the Universe No known particle in the SM can be DM precise, unambiguous evidence for new physics New physics S. Su Dark Matters 42

Conclusion We now know the composition of the Universe No known particle in the SM can be DM precise, unambiguous evidence for new physics New physics new stable particle as DM candidate S. Su Dark Matters 42

Conclusion We now know the composition of the Universe No known particle in the SM can be DM precise, unambiguous evidence for new physics New physics new stable particle as DM candidate WIMP: neutralino LSP in MSSM, LKP in UED S. Su Dark Matters 42

Conclusion We now know the composition of the Universe No known particle in the SM can be DM precise, unambiguous evidence for new physics New physics new stable particle as DM candidate WIMP: neutralino LSP in MSSM, LKP in UED direct/indirect DM searches, collider studies S. Su Dark Matters 42

Conclusion We now know the composition of the Universe No known particle in the SM can be DM precise, unambiguous evidence for new physics New physics new stable particle as DM candidate WIMP: neutralino LSP in MSSM, LKP in UED direct/indirect DM searches, collider studies synergy between cosmology and particle physics S. Su Dark Matters 42

Conclusion We now know the composition of the Universe No known particle in the SM can be DM precise, unambiguous evidence for new physics New physics new stable particle as DM candidate WIMP: neutralino LSP in MSSM, LKP in UED direct/indirect DM searches, collider studies synergy between cosmology and particle physics S. Su Dark Matters 42

Conclusion We now know the composition of the Universe No known particle in the SM can be DM precise, unambiguous evidence for new physics New physics new stable particle as DM candidate WIMP: neutralino LSP in MSSM, LKP in UED direct/indirect DM searches, collider studies synergy between cosmology and particle physics superwimp: new viable candidate for DM S. Su Dark Matters 42