Dark Matter Dark Energy Interactions

Similar documents
Galileon Cosmology ASTR448 final project. Yin Li December 2012

f(t) Gravity and Cosmology

QUINTESSENTIAL INFLATION

with EFTCAMB: The Hořava gravity case

Gravitational Waves. GR: 2 polarizations

Mimetic dark matter. The mimetic DM is of gravitational origin. Consider a conformal transformation of the type:

TESTING GRAVITY WITH COSMOLOGY

Gravity and scalar fields. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste (...soon at the University of Nottingham)

Cosmology, Scalar Fields and Hydrodynamics

Cosmological and astrophysical applications of vector-tensor theories

Cosmology in generalized Proca theories

Modified Gravity. Santiago E. Perez Bergliaffa. Department of Theoretical Physics Institute of Physics University of the State of Rio de Janeiro

Healthy theories beyond Horndeski

What can Cosmology tell us about Gravity? Levon Pogosian Simon Fraser University

Vainshtein mechanism. Lecture 3

Chapter - 3. Analytical solutions of the evolution of mass of black holes and. worm holes immersed in a Generalized Chaplygin Gas model

Topics on Galileons and generalized Galileons. Pacific 2016, Moorea, Sept the 13th. 1. What are scalar Galileons? 2. What are they useful for?

The general form of the coupled Horndeski Lagrangian that allows cosmological scaling solutions

Introduction to the Vainshtein mechanism

Claudia de Rham July 30 th 2013

Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters

Three-form Cosmology

Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]]

Observational evidence and cosmological constant. Kazuya Koyama University of Portsmouth

D. f(r) gravity. φ = 1 + f R (R). (48)

Modified gravity. Kazuya Koyama ICG, University of Portsmouth

Oddities of the Universe

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s

Mimetic Cosmology. Alexander Vikman. New Perspectives on Cosmology Institute of Physics of the Czech Academy of Sciences

The early and late time acceleration of the Universe

Stable violation of the null energy condition and non-standard cosmologies

Detecting Dark Energy Perturbations

Inhomogeneous vacuum energy

Massive gravity meets simulations?

Dark Energy & General Relativity «Some theoretical thoughts»

Bimetric Theory (The notion of spacetime in Bimetric Gravity)

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris)

1. De Sitter Space. (b) Show that the line element for a positively curved FRW model (k = +1) with only vacuum energy (P = ) is

Could dark energy be modified gravity or related to matter?

Set 3: Cosmic Dynamics

BIANCHI TYPE I ANISOTROPIC UNIVERSE WITHOUT BIG SMASH DRIVEN BY LAW OF VARIATION OF HUBBLE S PARAMETER ANIL KUMAR YADAV

Dark Energy and Dark Matter Interaction. f (R) A Worked Example. Wayne Hu Florence, February 2009

Sergei D. Odintsov (ICREA and IEEC-CSIC) Misao Sasaki (YITP, Kyoto University and KIAS) Presenter : Kazuharu Bamba (KMI, Nagoya University)

Effective Field Theory approach for Dark Energy/ Modified Gravity. Bin HU BNU

Steady-State Cosmology in the Yilmaz Theory of Gravitation

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PHYM432 Relativity and Cosmology 17. Cosmology Robertson Walker Metric

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste

Bimetric Massive Gravity

Examining the Viability of Phantom Dark Energy

Constraints on the deviations from general relativity

Cosmological Tests of Gravity

Inflationary Paradigm in Modified Gravity

Nonlinear massive gravity and Cosmology

4 Evolution of density perturbations

Cosmology (Cont.) Lecture 19

Modifications of gravity induced by abnormally weighting dark matter

Dark Energy. RESCEU APcosPA Summer School on Cosmology and Particle Astrophysics Matsumoto city, Nagano. July 31 - August

Introduction to Cosmology

Astronomy, Astrophysics, and Cosmology

Vasiliki A. Mitsou. IFIC Valencia TAUP International Conference on Topics in Astroparticle and Underground Physics

COLA with scale dependent growth: applications to modified gravity and massive neutrinos

Decaying Dark Matter, Bulk Viscosity, and Dark Energy

Mathematical and Physical Foundations of Extended Gravity (II)

General Relativity Lecture 20

Examining the Viability of Phantom Dark Energy

Non-linear structure formation in modified gravity

Cosmological perturbations in f(r) theories

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

Dilaton and IR-Driven Inflation

On Acceleration of the Universe. Waseda University Kei-ichi Maeda

The Influence of DE on the Expansion Rate of the Universe and its Effects on DM Relic Abundance

Graceful exit from inflation for minimally coupled Bianchi A scalar field models

Beyond Einstein: gravitational waves from extended gravities

Dilaton gravity at the brane with general matter-dilaton coupling

Testing gravity on Large Scales

Nonsingular big-bounce cosmology from spin and torsion

Extended mimetic gravity:

Thermodynamics in Modified Gravity Theories Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]]

Degenerate Higher-Order Scalar-Tensor (DHOST) theories. David Langlois (APC, Paris)

with Matter and Radiation By: Michael Solway

Interaction between dark energy and dark matter. 王斌 Fudan University

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Graviton contributions to the graviton self-energy at one loop order during inflation

CMB Polarization in Einstein-Aether Theory

A glimpse on Cosmology: Mathematics meets the Data

Lecture 1 General relativity and cosmology. Kerson Huang MIT & IAS, NTU

non-linear structure formation beyond the Newtonian approximation: a post-friedmann approach

Bianchi Type-III Inflationary Universe with Constant Deceleration Parameter in General Relativity

Quintessence with induced gravity

Brane-World Cosmology and Inflation

Inflationary Massive Gravity

The effect of Universal Extra Dimensions on Cosmological Evolution

Constructing ghost-free degenerate theories with higher derivatives

Towards a new scenario of inflationary magnetogenesis. Shinji Mukohyama (YITP, Kyoto U) Based on PRD94, 12302(R) (2016)

Holographic methods for cosmology. Gonzalo Torroba Stanford University

The Invisible Universe: Dark Matter and Dark Energy

CHAPTER 4 INFLATIONARY MODEL BUILDING. 4.1 Canonical scalar field dynamics. Non-minimal coupling and f(r) theories

Conserved Quantities in Lemaître-Tolman-Bondi Cosmology

Domain wall solution and variation of the fine structure constant in F(R) gravity

Transcription:

E.N.Saridakis 9 th Aegean Sifnos. Sept 07 Dark Matter Dark Energy Interactions Emmanuel N. Saridakis Physics Department National and Technical University of Athens reece Physics Department Baylor University Texas USA

oal We investigate cosmological scenarios in a universe where dark sectors are allowed to mutually interact Note: A consistent or interesting cosmology is not a proof for the consistency of the underlying gravitational theory E.N.Saridakis 9 th Aegean Sifnos. Sept 07

E.N.Saridakis 9 th Aegean Sifnos. Sept 07 Why Modification? Knowledge of Physics: Standard Model

E.N.Saridakis 9 th Aegean Sifnos. Sept 07 Why Modification? Knowledge of Physics: Standard Model + eneral Relativity

E.N.Saridakis 9 th Aegean Sifnos. Sept 07 Why Modification? Universe istory:

Modified ravity en. Proca Non-minimal gravitymatter coupling 6 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

7 Scalar-Tensor Theories Add a scalar field: Conformal Transf. to Jordan frame: 6 g h s R f g m g g h E.N.Saridakis 9 th Aegean Sifnos. Sept 07

8 Scalar-Tensor Theories Add a scalar field: Conformal Transf. to Jordan frame: Redefinition of : Brans-Dicke for R for 6 g h s R f g m g g h 6 g V R g m. 0 V const. 0 / ' V const [BransDicke PR ] [Santosregory Annals Phys. 8] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Scalar-Tensor Theories Field equations: V g 8 T ' V V ' 8 T For Brans-Dicke: PPN parameters: PPN PPN 0000 Newton s constant: with [D.F. Toress PRD 66].7 0 yr 9 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Brans-Dicke Cosmology Friedmann-Robertson-Walker metric: ds dt a t dx ij i dx j Friedmann equations: 8 V m 6 8p m Scalar-field equation: 8 m pm 0 V V dv d Matter equation: m p 0 m m 0 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Inflation in Brans-Dicke Cosmology [asteinhardt PR 6] [reen iddle PRD ] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark Energy in Brans-Dicke Cosmology Effective Dark Energy sector: DE 8 6 V 8 p DE 8 V 8 w DE p DE DE V V 0 [D.F. Toress PRD 66] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

orndeski Theories Most general D scalar-tensor theories having second-order field equations: i i ] [ K K ] [ ] [ R 6 ] [ [. orndeski Int. J. Theor. Phys. 0 ] / E.N.Saridakis 9 th Aegean Sifnos. Sept 07

orndeski Theories Most general D scalar-tensor theories having second-order field equations: [Nicolis Rattazzi Trincherini PRD 79] i i ] [ K K ] [ ] [ R 6 ] [ [. orndeski Int. J. Theor. Phys. 0 ] Coincides with eneralized alileon theories b c / E.N.Saridakis 9 th Aegean Sifnos. Sept 07 [Deffayet Esposito-Farese Vikman PRD 79]

orndeski Cosmology background Field Equations: In flat FRW: with R S S.... m K K 6 6 6 6 m p K 8 8 P J a dt d a 6 6 6 K J K P 6 6 6 [De FeliceTsujikawa JCAP 0] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

orndeski Cosmology perturbations Scalar perturbations: No-ghost condition: No aplacian instabilities condition: with w w w ds i dt a dx dx ij w w w 9w Q S 0 w w w w w ww w w w 6w m pm cs w w w 9w 8 8 6 K K 6 6 6 6 6 7 j 7 6.. S R.. S 8 0 w [De FeliceTsujikawa JCAP 0] 6 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Inflation in orndeski Theories K V 0 c M [OhashiTsujikawa JCAP 0] V V m 7 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

8 8 Inflation in orndeski Theories -Inflation Shift-symmetric: 0 M c V K m V V [OhashiTsujikawa JCAP 0] 0 M M K 0.7 r [KobayashiYamaguchiYokoyama PR 0] [Banerjee Saridakis PRD 9] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark Energy in orndeski Theories K c c c Background evolution: Universe thermal history [AliannoujiSami PRD 8] [eon Saridakis JCAP 0] 9 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark Energy in orndeski Theories K c c c Background evolution: Universe thermal history [eon Saridakis JCAP 0] Perturbations: with eff eff m m eff K m m Clustering growth rate: γz: rowth index. d ln d ln a m m a [AliannoujiSami PRD 8] 0 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Fab Four FF john paul george ringo john Vjohn paul Vpaul P george Vgeorge R ringo V ringo ˆ P ˆ R R [CharmousisCopelandPadillaSaffin PR 08] R R [ ] R [ ] R [ ] R R R [CopelandPadillaSaffin JCAP ] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Nonminimal Derivative Coupling In flat FRW: S m S r V g R g x d S 6 r m V 9 8 r p m p V 8 [SaridakisSuskov PRD 8] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Nonminimal Derivative Coupling Dark Energy In flat FRW: S m S r V g R g x d S 6 r m V 9 8 r p m p V 8 [SaridakisSuskov PRD 8] [DentDuttaSaridakisia JCAP ] e V V 0 n V V 0 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Nonminimal Derivative Coupling - Inflation New iggs Inflation: r 0.0 [ermanikehagias PR 0] V V 0 [SkugorevaSushkovToporensky PRD 88] [DalianisKoutsoumbasNtrekisPapantonopoulos JCAP 70] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Beyond orndeski Theories Beyond orndeski free from Ostrogradski instabilities but still propagating + dof s: with Primary constraint prevents the propagation of extra degrees of freedom i B i [ ] A ] [ ] [ C C C ] [ ] [ ] [ gal B A B C C C B gal [leyzesangloispiazzavernizzi PR ] [CrisostomiullKoyamaTasinato JCAP 60 ] / / ] [ ] [ ] [ ] [ gal A B D D D C gal A A i i B B i i d A C / d B C / d B C / d C D / d B / E.N.Saridakis 9 th Aegean Sifnos. Sept 07

6 6 Bi-scalar Theories Modified gravity propagating + dof s For R R R f g x d S R R Q R R R K R R R f g e B B B K K [NarukoYoshidaMukohyama CQ ] ˆ ˆ 6 ˆ ˆ e Q e K e Q g e g R g x d S E.N.Saridakis 9 th Aegean Sifnos. Sept 07

7 7 Bi-scalar Theories Modified gravity propagating + dof s For eg.: [SaridakisTsoukalas PRD 9 ] R R R f g x d S R R Q R R R K R R R f ˆ ˆ 6 ˆ ˆ e Q e K e Q g e g R g x d S g e B B B K K B B B K e e DE 6 6 8 / / 6 6 8 / / e e p DE [NarukoYoshidaMukohyama CQ ] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark Matter Dark Energy Interaction Theoretical argument: In principle since the underlying theory and the microphysics of both dark energy and dark matter is unknown possible mutual interactions cannot be excluded. 8 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark Matter Dark Energy Interaction Theoretical argument: In principle since the underlying theory and the microphysics of both dark energy and dark matter is unknown possible mutual interactions cannot be excluded. Phenomenological argument: Alleviate the coincidence problem: Why are the DE and DM densities nearly equal today although they scale independently through the expansion history [Billyard Coley PRD 6] [Mimoso Nunes Pavon PRD 7] [Wang ong Abdalla PB 6] [Chen ong Saridakis JCAP 090] [Caldera-Cabral Maartens Urena-opez PRD 79] [Clifton Barrow PRD 7] 9 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

S DM DE Interaction d x g R S 6 S DM Assume that DE and DM are effectively described by perfect fluids. 8 DE DE p DE DM DM p DM S b 0 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

S DM DE Interaction d x g R S 6 S DM Assume that DE and DM are effectively described by perfect fluids. 8 DE DE p DE DM DM p Equations give only the total conservation namely DM S b b T tot ab b DE DM T T 0 ab ab If we assume DM conservation i.e b T DM 0 then DE is also conserved: DM DE DM pdm 0 p 0 DE DE ab b DE Tab 0 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

DM DE Interaction owever it is not forbidden to assume DM DE interaction by arbitrarily splitting as: b DM Tab Qa b with T Q DE ab Qa a a phenomenological descriptor of the interaction positive corresponds to energy transfer from DE to DM and vice versa. Qa E.N.Saridakis 9 th Aegean Sifnos. Sept 07

DM DE Interaction owever it is not forbidden to assume DM DE interaction by arbitrarily splitting as: b DM Tab Qa b with T Q DE ab Q a a a phenomenological descriptor of the interaction positive corresponds to energy transfer from DE to DM and vice versa. Despite possible pathologies curvature perturbation blowing up in super- ubble scales [ValiviitaMajerottoMaartens JCAP 0807] it leads to interesting cosmological behavior. E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Phenomenological Models I Q Q 0 DE DE DM DM II Q Q 0 DM III Q etc Q 0 n n n DM E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Phenomenological Models I Q Q 0 DE DE DM DM II Q Q 0 DM III Q etc Q 0 n n n DM Obtain late time attractors with R DE / DM ~ [Chen ong Saridakis JCAP 090] [ValiviitaMajerottoMaartens MNRAS 0] [Caldera-Cabral Maartens Urena-opez PRD 79] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

More general phenomenological models Q a with a. DE a known DE a 0 Solve coincidence problem can lead to intermediate acceleration [Chen ong Saridakis JCAP 090] 6 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Observational constraints Impose SNIa BAO and CMB observational constraints [Clemson Koyama Zhao Maartens Valiviita PRD 8] Incorporate relativistic effects in the large-scale power spectrum. [Duniya Bertacca Maartens PRD 9] 7 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Another approach to phenomenological models If Q=0 then DM / a DM 0. Instead of imposing Q one can parametrize its effect assuming: DM DM 0 / a perturbations can also be studied; obtain matter overdensity [Wang Meng CQ ] 8 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Another approach to phenomenological models If Q=0 then DM / a DM 0. Instead of imposing Q one can parametrize its effect assuming: DM 0 / a perturbations can also be studied; obtain matter overdensity DM [Wang Meng CQ ] 0+SNIa+BAO+CMB Slight tendency towards interacting DE δ<0 implies energy flow DM -> DE [Nunes Pan Saridakis PRD 9] 9 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

agrangian? Covariant formulation? Microscopic agrangian of DM-DE interaction is unknown. Effective agrangians are also absent. 0 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

agrangian? Covariant formulation? Microscopic agrangian of DM-DE interaction is unknown. Effective agrangians are also absent. Two interacting fluids: p Q p Q Covariant approach two not-tilted fluids i.e with common -velocity: T T p u aub p gab qaub qbua p u aub p gab qaub qbua ab ab c c q t u is a current energy density that describes the energy transfer between the fluids time dependent due to spacial isotropy [Faraoni Dent Saridakis PRD 90] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

agrangian? Covariant formulation? Microscopic agrangian of DM-DE interaction is unknown. Effective agrangians are also absent. Two interacting fluids: p Q p Q Covariant approach two not-tilted fluids i.e with common -velocity: T T p u aub p gab qaub qbua p u aub p gab qaub qbua ab ab c c q t u is a current energy density that describes the energy transfer between the fluids Imperfect fluids with b T i ab u a time dependent due to spacial isotropy u b b p i T u i a u p b b ence not a robust agrangian description for imperfect fluids i i b b i a pi pi i u bua pi i u a ub [Faraoni Dent Saridakis PRD 90] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

agrangian? Covariant formulation? Inspired by the agrangian formulation of classical dissipative oscillator we can remove the imperfectness by transforming the metric as: g ab g ab u a u b E.N.Saridakis 9 th Aegean Sifnos. Sept 07

agrangian? Covariant formulation? Inspired by the agrangian formulation of classical dissipative oscillator we can remove the imperfectness by transforming the metric as: g ab g ab u a u b ence: T ab p p u aub pgab Describes a perfect fluid with p and p p in spacetime metric b T ab 0 gab g p : agrangian description in a fictitious metric that depends on the fluid Still not ideal for multiple fluids. [Faraoni Dent Saridakis PRD 90] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Matter fluid: Another approach to phenomenological models M g A are agrange multipliers and A J vector-density particle-number flux Dark Energy is described by a scalar field: A n s J s A are the agrange coordinates of the fluid g V E.N.Saridakis 9 th Aegean Sifnos. Sept 07

6 6 Another approach to phenomenological models Matter fluid: are agrange multipliers and are the agrange coordinates of the fluid vector-density particle-number flux Dark Energy is described by a scalar field: DM-DE interaction: Algebraic coupling: Derivative Coupling: Al. coupl.: Der. Coupl.: Perturbations structure formation quasi-static limit etc A A M s J s n g [Koivisto Saridakis Tamanini JCAP 09] A A J V g A A M s J s n g int A A M s J J s n f s n g int dm T Q T n Q u n n f n Q E.N.Saridakis 9 th Aegean Sifnos. Sept 07

7 7 Dark energy - dark matter interaction/unification from generalized alileons Most general D scalar-tensor theories having second-order field equations: [NicolisRattazziTrincherini PRD 79] i i ] [ K K ] [ ] [ R 6 ] [ [. orndeski Int. J. Theor. Phys. 0 ] Coincides with eneralized alileon theories b c / E.N.Saridakis 9 th Aegean Sifnos. Sept 07 [Deffayet Esposito-Farese Vikman PRD 79]

8 8 Dark energy - dark matter interaction/unification from generalized alileons Field Equations In flat FRW: with m K K 6 6 6 6 m p K 8 8 P J a dt d a 6 6 6 K J K P 6 6 6 [De FeliceTsujikawa JCAP 0] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

9 9 Dark energy - dark matter interaction/unification from generalized alileons In flat FRW: R g x d S 0 9 0 [KoutsoumbasNtrekisPapantonopoulosSaridakis 70.0860] 0 6 9 6 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark energy - dark matter interaction/unification from generalized alileons We can rewrite as: 8 p with p 9 Klein-ordon becomes: p 0 Define Equation-of-State parameter: w p / [KoutsoumbasNtrekisPapantonopoulosSaridakis 70.0860] 0 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark energy - dark matter interaction/unification from generalized alileons Shift symmetry allows to write: p f 7 6 f f 7 6 f 6 7 f 9 f with f and w p / [KoutsoumbasNtrekisPapantonopoulosSaridakis 70.0860] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark energy - dark matter interaction/unification from generalized alileons Shift symmetry allows to write: p f 7 6 f f 7 6 f 6 7 f 9 f with f and w p / Allows for a unified description of universe evolution. eneralized Chaplygin gas: p A/ p 0 0 A0 p 0A0 A A a 0 0 A a 0 a0 z a [KoutsoumbasNtrekisPapantonopoulosSaridakis 70.0860] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Simplest case: Model I : Dark energy - dark matter interaction/unification from generalized alileons w z 0 w 0 0 0 6 0 6 6 z z [KoutsoumbasNtrekisPapantonopoulosSaridakis 70.0860] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark energy - dark matter interaction/unification from generalized alileons Simplest case: Model I : we demand w z 0 w 0 0 0 6 0 6 6 z z wz 0-0.7 and z 0 0 [KoutsoumbasNtrekisPapantonopoulosSaridakis 70.0860] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark energy - dark matter interaction/unification from generalized alileons Model II : 0 0 0 z w z 9 z 6 z we demand wz 0-0.7 and z 0 0 [KoutsoumbasNtrekisPapantonopoulosSaridakis 70.0860] E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark energy - dark matter interaction/unification from generalized alileons Model II : 0 0 0 z w z 9 z 6 z we demand wz 0-0.7 and z 0 0 [KoutsoumbasNtrekisPapantonopoulosSaridakis 70.0860] 6 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark energy - dark matter interaction/unification from generalized alileons Model II : 0 0 0 z w z 9 z 6 z 80 SN Ia data points [KoutsoumbasNtrekisPapantonopoulosSaridakis 70.0860] 7 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark energy - dark matter interaction/unification from generalized alileons Model II : 0 0 0 z w z 9 z 6 z we demand wz 0-0.7 and z 0 0 [KoutsoumbasNtrekisPapantonopoulosSaridakis 70.0860] 8 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark energy - dark matter interaction/unification from generalized alileons Scalar perturbations: No-ghost condition: No aplacian instabilities condition: with w w w ds i dt a dx dx ij w w w 9w Q S 0 w w w w w ww w w w 6w m pm cs w w w 9w 8 8 6 K K 6 6 6 6 6 7 j 7 6.. S R.. S 8 0 w [De FeliceTsujikawa JCAP 0] 9 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Dark energy - dark matter interaction/unification from generalized alileons Model II : 0 0 0 ealthy scalar perturbations. Necessary to see tensor perturbations and the speed of gravitational waves. [KoutsoumbasNtrekisPapantonopoulosSaridakis 70.0860] 60 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

Conclusions i Modification of our knowledge is probably required for the explanation of cosmological evolution. ii There is a huge variety of modifications. iii Dark Energy or Modified ravity - Dark Matter interaction cannot be excluded and it can alleviate the coincidence problem. iv Many phenomenological approaches. Can become Covariant. A full agrangian description is still missing. v DE - DM interaction/unification from generalized alileons with shiftsymmetry. Unified universe evolution. vi SN Ia data OK. Necessary: Confront with CMB BAO and SS data. Need to add baryonic matter separately. Perform full perturbation analysis confront with data. 6 E.N.Saridakis 9 th Aegean Sifnos. Sept 07

TANK YOU! 6 E.N.Saridakis 9 th Aegean Sifnos. Sept 07