Embedding Supernova Cosmology into a Bayesian Hierarchical Model

Similar documents
arxiv: v2 [astro-ph.co] 18 Apr 2016

Fitting Narrow Emission Lines in X-ray Spectra

Type Ia Supernovae meet Maximum Likelihood Estimators

Bayesian Linear Models

Accounting for Calibration Uncertainty

Bayesian Computation in Color-Magnitude Diagrams

Yaming Yu Department of Statistics, University of California, Irvine Xiao-Li Meng Department of Statistics, Harvard University.

Bayesian Linear Models

Bayesian Linear Models

MCMC algorithms for fitting Bayesian models

Default Priors and Effcient Posterior Computation in Bayesian

Partially Collapsed Gibbs Samplers: Theory and Methods. Ever increasing computational power along with ever more sophisticated statistical computing

MARGINAL MARKOV CHAIN MONTE CARLO METHODS

Bayesian Linear Regression

Partially Collapsed Gibbs Samplers: Theory and Methods

The linear model is the most fundamental of all serious statistical models encompassing:

To Center or Not to Center: That is Not the Question An Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency

Marginal Markov Chain Monte Carlo Methods

Time Delay Estimation: Microlensing

Lecture 4: Dynamic models

Fitting Narrow Emission Lines in X-ray Spectra

Computer Practical: Metropolis-Hastings-based MCMC

Metropolis Hastings. Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601. Module 9

University of Toronto Department of Statistics

Markov Chain Monte Carlo

Solar Spectral Analyses with Uncertainties in Atomic Physical Models

Bayesian model selection for computer model validation via mixture model estimation

Metropolis-Hastings Algorithm

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution

Principles of Bayesian Inference

Bayesian linear regression

Gibbs Sampling in Linear Models #1

EM Algorithm II. September 11, 2018

Markov Chain Monte Carlo methods

Bayesian GLMs and Metropolis-Hastings Algorithm

Luminosity Functions

Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

The Recycling Gibbs Sampler for Efficient Learning

Novel Bayesian approaches to supernova type Ia cosmology

Estimating marginal likelihoods from the posterior draws through a geometric identity

BAYESIAN MODEL CRITICISM

Gibbs Sampling in Linear Models #2

CTDL-Positive Stable Frailty Model

Overall Objective Priors

Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geo-statistical Datasets

On Reparametrization and the Gibbs Sampler

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31

Multistage Anslysis on Solar Spectral Analyses with Uncertainties in Atomic Physical Models

Set 5: Expansion of the Universe

A Review of Pseudo-Marginal Markov Chain Monte Carlo

Gibbs Sampling in Endogenous Variables Models

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

Spatial Statistics with Image Analysis. Outline. A Statistical Approach. Johan Lindström 1. Lund October 6, 2016

Accounting for Complex Sample Designs via Mixture Models

Introduction to Machine Learning

Computational statistics

Bayes via forward simulation. Approximate Bayesian Computation

STA 4273H: Statistical Machine Learning

17 : Markov Chain Monte Carlo

STA 414/2104, Spring 2014, Practice Problem Set #1

Lecture 8: Bayesian Estimation of Parameters in State Space Models

MULTILEVEL IMPUTATION 1

Bayesian Modeling for Type Ia Supernova Data, Dust, and Distances

Markov Chain Monte Carlo in Practice

Markov Chain Monte Carlo (MCMC)

Large Scale Bayesian Inference

Default Priors and Efficient Posterior Computation in Bayesian Factor Analysis

Gibbs Sampling in Latent Variable Models #1

Markov Chain Monte Carlo methods

An introduction to Bayesian statistics and model calibration and a host of related topics

Rejoinder: Be All Our Insomnia Remembered...

CPSC 540: Machine Learning

STA 216, GLM, Lecture 16. October 29, 2007

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Sequential Monte Carlo Methods

eqr094: Hierarchical MCMC for Bayesian System Reliability

Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method

Hierarchical Modeling for Spatial Data

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference

Bayesian Nonparametric Regression for Diabetes Deaths

An introduction to Sequential Monte Carlo

Testing the mutual consistency of different supernovae surveys

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 15-7th March Arnaud Doucet

Set 1: Expansion of the Universe

Point spread function reconstruction from the image of a sharp edge

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

Introduction to Stochastic Gradient Markov Chain Monte Carlo Methods

Bayesian Gaussian Process Regression

Part 8: GLMs and Hierarchical LMs and GLMs

Advanced Statistical Methods. Lecture 6

THE ACCELERATING UNIVERSE. A.Rahman Mohtasebzadeh (9/21/2012)

MARKOV CHAIN MONTE CARLO

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Graphical Models and Kernel Methods

Metropolis-Hastings sampling

Advanced Statistical Computing

Transcription:

1 / 41 Embedding Supernova Cosmology into a Bayesian Hierarchical Model Xiyun Jiao Statistic Section Department of Mathematics Imperial College London Joint work with David van Dyk, Roberto Trotta & Hikmatali Shariff ICHASC Talk Jan 27, 2015

2 / 41 Outline 1 Algorithm Review 2 Combining Strategies 3 Surrogate Distribution 4 Extensions on Cosmological Model 5 Conclusion

1 Tanner, M. A. and Wong, W. H. (1987) 3 / 41 Problem Setting Goal: Sample from posterior distribution p(ψ Y ) using Gibbs-type samplers. Special case: Data Augmentation (DA) Algorithm 1 ψ = (θ, Y mis ). DA algorithm proceeds as: [Y mis θ ] [θ Y mis ]. Stationary distribution: p(y mis, θ Y ). DA algorithm and Gibbs samplers are easy to implement, but... Converge slowly!

1 Tanner, M. A. and Wong, W. H. (1987) 4 / 41 Problem Setting Goal: Sample from posterior distribution p(ψ Y ) using Gibbs-type samplers. Special case: Data Augmentation (DA) Algorithm 1 ψ = (θ, Y mis ). DA algorithm proceeds as: [Y mis θ ] [θ Y mis ]. Stationary distribution: p(y mis, θ Y ). DA algorithm and Gibbs samplers are easy to implement, but... Converge slowly!

Blue Rectangle Expand Paramter Space; Yellow Ellipse Change Conditioning Strategy 5 / 41 Algorithm Review MCMC Methods MDA (1999) DA Algorithm (1987) ASIS (2011) Gibbs Sampler (1993) PCG (2008)

6 / 41 Marginal Data Augmentation Marginal Data Augmentation (MDA) 2 MDA introduces a working parameter α into p(y, Y mis θ) via Y mis [e.g., Ỹmis = F α (Y mis )], s.t., p(ỹmis, Y θ, α)dỹmis = p(y θ). If the prior distribution of α is proper, MDA proceeds as: [α, Ỹmis θ ] [α, θ Ỹmis]. MDA improves convergence by increasing variability in augmented data and reducing augmented information. 2 Meng, X.-L. and van Dyk, D. A. (1999); Liu, J. S. and Wu, Y. N. (1999)

7 / 41 Ancillarity-Sufficiency Interweaving Strategy Ancillarity-Sufficiency Interweaving Strategy (ASIS) 3 ASIS considers a pair of special DA schemes: Sufficient augmentation Y mis,s : p(y Y mis,s, θ) is free of θ. Ancillary augmentation Y mis,a : p(y mis,a θ) is free of θ. Given θ, Y mis,a = F θ (Y mis,s ). ASIS proceeds as Interweave [θ Y mis,s ] into DA algorithm w.r.t. Y mis,a [Y mis,s θ ] [θ Y mis,s ] [Y mis,a Y mis,s, θ ] [θ Y mis,a ] [Y mis,s θ ] [Y mis,a Y mis,s ] [θ Y mis,a ] ASIS obtains more efficiency by taking advantage of the "beauty-and-beast" feature of two parent DA algorithms. 3 Yu, Y. and Meng, X.-L. (2011)

8 / 41 Understanding ASIS Model: Y (Y mis, θ) N(Y mis, 1), Y mis θ N(θ, V ), p(θ) 1. ASIS: Y mis,s = Y mis, Y mis,a = Y mis θ. [Y mis,s θ ] [θ Y mis,s ] [Y mis,a Y mis,s, θ ] [θ Y mis,a ] θ = constant Y mis = constant Y mis θ = constant Y mis 1 0 1 2 3 Y mis 1 0 1 2 3 Y mis 1 0 1 2 3 2 1 0 1 2 3 4 2 1 0 1 2 3 4 2 1 0 1 2 3 4 θ θ θ More directions: efficient and easy to implement.

4 van Dyk, D. A. and Park, T. (2008) 9 / 41 Partially Collapsed Gibbs Sampling Partially Collapsed Gibbs (PCG) 4 Model Reduction: PCG reduces conditioning of Gibbs. It replaces some conditional distributions of a Gibbs sampler with conditionals of marginal distributions of the target. PCG improves convergence by increasing variance and jump size of conditional distributions. Three stages: Marginalization, permutation, trimming. Tools to transform a Gibbs sampler into a PCG one. Maintain the target stationary distribution.

10 / 41 Examples of PCG Sampling Example. ψ = (ψ 1, ψ 2, ψ 3, ψ 4 ); Sample from p(ψ Y ). Gibbs p(ψ 1 ψ 2, ψ 3, ψ 4 ) p(ψ 2 ψ 1, ψ 3, ψ 4 ) p(ψ 3 ψ 1, ψ 2, ψ 4 ) p(ψ 4 ψ 1, ψ 2, ψ 3 ) PCG I p(ψ 1 ψ 2, ψ 3, ψ 4 ) p(ψ 2, ψ 3 ψ 1, ψ 4 ) p(ψ 4 ψ 1, ψ 2, ψ 3 ) PCG II p(ψ 1 ψ 2, ψ 4 ) p(ψ 2, ψ 3 ψ 1, ψ 4 ) p(ψ 4 ψ 1, ψ 2, ψ 3 ) Special cases: blocked and collapsed Gibbs, e.g., PCG I. More interestingly, a PCG sampler consists of incompatible conditional distributions, e.g., PCG II. Modifying the order of steps of PCG II may alter its stationary distribution.

11 / 41 Three Stages to Derive a PCG Sampler (a) Gibbs p(ψ 1 ψ 2, ψ 3, ψ 4 ) p(ψ 2 ψ 1, ψ 3, ψ 4 ) p(ψ 3 ψ 1, ψ 2, ψ 4 ) p(ψ 4 ψ 1, ψ 2, ψ 3 ) (c) Permute p(ψ 1, ψ 3 ψ 2, ψ 4 ) p(ψ 2, ψ 3 ψ 1, ψ 4 ) p(ψ 2 ψ 1, ψ 3, ψ 4 ) p(ψ 4 ψ 1, ψ 2, ψ 3 ) (b) Marginalize p(ψ 1, ψ 3 ψ 2, ψ 4 ) p(ψ 2 ψ 1, ψ 3, ψ 4 ) p(ψ 2, ψ 3 ψ 1, ψ 4 ) p(ψ 4 ψ 1, ψ 2, ψ 3 ) (d) Trim [PCG II] p(ψ 1 ψ 2, ψ 4 ) p(ψ 2, ψ 3 ψ 1, ψ 4 ) p(ψ 4 ψ 1, ψ 2, ψ 3 ) Intermediate Draws

12 / 41 Outline 1 Algorithm Review 2 Combining Strategies 3 Surrogate Distribution 4 Extensions on Cosmological Model 5 Conclusion

5 Gilks et al. (1995) 6 van Dyk, D. A. and Jiao, X. (2015) 13 / 41 Combining Different Strategies into One Sampler Cannot Sample Conditionals? Embed Metropolis-Hastings (MH) into Gibbs 5 standard. Embed MH into PCG 6 subtle implementation! Further Improvement in Convergence Several parameters converge slowly a strategy is efficient for one parameter, but has little effect on others; Another strategy has opposite effect. By combining, we improve all. One strategy alone is useful for all parameters prefer to use a combination, as long as gained efficiency exceeds extra computational expense.

14 / 41 Background Physics Nobel Prize (2011): discovery of acceleration of expansion of the universe. The acceleration is attributed to existence of dark energy. Type Ia supernova (SNIa) observations: critical to quantify characteristics of dark energy. Mass > Chandrasekhar threshold (1.44 M ) = SN explosion. Image credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

15 / 41 Standardizable Candles Common history = similar absolute magnitudes for SNIa, i.e., M i N(M 0, σint 2 ) = SNIa are standardizable candles. Phillips corrections: M i = Mi ɛ αx i + βc i, Mi ɛ N(M 0, σɛ 2 ); x i stretch correction, c i color correction, σ 2 ɛ σ 2 int

16 / 41 Distance Modulus Apparent Magnitude Absolute Magnitude = Distance Modulus: m B M = µ = 5log 10 [distance(mpc)] + 25. Nearby SN: distance = zc/h 0 ; Distant SN: µ = µ(z, Ω m, Ω Λ, H 0 ); c speed of light H 0 Hubble constant z redshift Ω m total matter density Ω Λ dark energy density

Bayesian Hierarchical Model 7 Level 1: Errors-in-variables regression: Level 2: ĉ i ˆx i ˆm Bi m Bi = µ i + M ɛ i αx i + βc i ; N c i x i m Bi, Ĉi, i = 1,..., n. M ɛ i N(M 0, σ 2 ɛ ); x i N(x 0, R 2 x ); c i N(c 0, R 2 c ). Priors: Gaussian for M 0, x 0, c 0 ; Uniform for Ω m, Ω Λ, α, β, log(r x ), log(r c ), log(σ ɛ ). z and H 0 fixed. 7 March et al. (2011) 17 / 41

18 / 41 Notation and Data Notation X (3n 1) (c 1, x 1, M ɛ 1,..., c n, x n, M ɛ n); b (3 1) (c 0, x 0, M 0 ); L (3n 1) (0, 0, µ 1,..., 0, 0, µ n ); 1 0 0 T (3 3) = 0 1 0, and A (3n 3n) = Diag(T,..., T ). β α 1 Data: A sample of 288 SNIa compiled by Kessler et al. (2009).

19 / 41 Algorithms for Cosmological Herarchical Model MH within Gibbs sampler: Update of (Ω m, Ω Λ ) needs MH. MH within PCG sampler: Sample (Ω m, Ω Λ ) and (α, β) without conditioning on (X, b). Updates of both (Ω m, Ω Λ ) and (α, β) need MH. ASIS sampler: Y mis,s for (Ω m, Ω Λ ) and (α, β): AX + L; Y mis,a for (Ω m, Ω Λ ) and (α, β): X. MH within PCG+ASIS sampler: Given (α, β), sample (Ω m, Ω Λ ) with MH within PCG; Given (Ω m, Ω Λ ), sample (α, β) with ASIS. For each sampler, run 11,000 iterations with a burn-in of 1,000.

Convergence Results of Gibbs and PCG Ωm 0.0 0.2 0.4 0.6 MH within Gibb MH within PCG Ωm 0.0 0.2 0.4 0.6 ΩΛ 1.2 ΩΛ 1.2 α 0.06 0.12 0.18 β 2.2 2.6 3.0 α 0.06 0.12 0.18 β 2.2 2.6 3.0 20 / 41

Convergence Results of ASIS and Combining Ωm 0.0 0.2 0.4 0.6 ASIS PCG within ASIS Ωm 0.0 0.2 0.4 0.6 ΩΛ 1.2 ΩΛ 1.2 α 0.06 0.12 0.18 β 2.2 2.6 3.0 α 0.06 0.12 0.18 β 2.2 2.6 3.0 21 / 41

22 / 41 Effective Sample Size (ESS) per Second The larger the ESS/sec, the more efficient the algorithm. Gibbs PCG ASIS PCG+ASIS Ω m 0.00166 0.0302 0.0103 0.0392 Ω Λ 0.000997 0.0232 0.00571 0.0282 α 0.00712 0.0556 0.0787 0.0826 β 0.00874 0.0264 0.0830 0.0733

23 / 41 Factor Analysis Model Model Y i N [ ] Z i β, Σ = Diag(σ1 2,..., σ2 p), for i = 1,..., n. Y i (1 p) vector of the ith observation; Z i (1 q) vector of factors; Z i β N(0, I); q < p. β and Σ unknown parameters. Priors: p(β) 1; σ 2 j Inv-Gamma(0.01, 0.01), j = 1,..., p. Simulation Study Set p = 6, q = 2, and n = 100. σ 2 j Inv-Gamma(1, 0.5), (j = 1,..., 6); β hj N(0, 3 2 ), (h = 1, 2; j = 1,..., 6).

Algorithms for Factor Analysis Standard Gibbs sampler: [ Z β, Σ ] [ ] σj 2 Z, β, σ j 2 p [β Z, Σ]. j=1 MH within PCG sampler: sampling σ 2 1, σ2 3 and σ2 4 without conditioning on Z. This should be facilitated by MH. ASIS sampler: Y mis,a for β: Z i ; Y mis,s for β: W i = Z i β. MH within PCG+ASIS sampler: Given β, update Σ with MH within PCG; Given Σ, update β with ASIS. For each sampler, run 11,000 iterations with a burn-in of 1,000. 24 / 41

Convergence Results of Factor Analysis Model Gibbs 2 log(σ 1 ) 7 5 3 1 PCG 2 log(σ 1 ) 7 5 3 1 ASIS 2 log(σ 1 ) 7 5 3 1 Gibbs β 13 2 1 0 1 2 PCG β 13 2 1 0 1 2 ASIS β 13 2 1 0 1 2 PCG+ASIS 2 log(σ 1 ) 7 5 3 1 PCG+ASIS β 13 2 1 0 1 2 25 / 41

26 / 41 Effective Sample Size (ESS) per Second The larger the ESS/sec, the more efficient the algorithm. Gibbs PCG ASIS PCG + ASIS log(σ1 2 ) 0.18 2.17 0.15 1.91 β 13 0.0087 0.0090 17.54 15.37

27 / 41 Outline 1 Algorithm Review 2 Combining Strategies 3 Surrogate Distribution 4 Extensions on Cosmological Model 5 Conclusion

28 / 41 Bivariate Surrogate Distribution Target distribution: p(ψ 1, ψ 2 ). Surrogate distribution: π(ψ 1, ψ 2 ). π(ψ 1 ) = p(ψ 1 ), π(ψ 2 ) = p(ψ 2 ); The correlation between ψ 1 and ψ 2 is lower for π than for p. Sampler S.1 p(ψ 1 ψ 2 ) p(ψ 2 ψ 1 ) Sampler S.2 π(ψ 1 ψ 2 ) p(ψ 2 ψ 1 ) Sampler S.3 π(ψ 1 ψ 2 ) π(ψ 2 ψ 1 ) Stationary distribution of Samplers S.1 and S.2: p(ψ 1, ψ 2 ). Stationary distribution of Sampler S.3: π(ψ 1, ψ 2 ). Condition for Sampler S.2 maintaining the target: π(ψ 1 ) = p(ψ 1 ), π(ψ 2 ) = p(ψ 2 ); Step order is fixed.

29 / 41 Comparison of Samplers S.1 S.3 Example. [( 0 p(ψ 1, ψ 2 ) : N 0 ) ( 1 0.99, 0.99 1 )] [( 0 ; π(ψ 1, ψ 2 ) : N 0 ) ( 1 ρπ, ρ π 1 )]. Convergence rate 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 Sampler S.1 Sampler S.2 Sampler S.3 ρ π

30 / 41 Ways to Derive Surrogate Distributions ASIS: [Y mis,s θ ] [Y mis,a Y mis,s ] [θ Y mis,a ]. π(θ Y mis,s ) = p(y mis,a Y mis,s )p(θ Y mis,a )dy mis,a ; π(θ, Y mis,s ) = π(θ Y mis,s )p(y mis,s ). PCG: intermediate stationary distributions. PCG II: [ψ 1 ψ 2, ψ 4 ] [ψ 2, ψ 3 ψ 1, ψ 4 ] [ψ 4 ψ 1, ψ 2, ψ 3 ]. Intermediate stationary ending with Step 1: π(ψ 1, ψ 2, ψ 3, ψ 4 ) = p(ψ 2, ψ 3, ψ 4 )p(ψ 1 ψ 2, ψ 4 ). MDA: [α, Ỹmis θ ] [α, θ Ỹmis]. p(θ Ỹmis) = p(α, θ Ỹmis)dα Set Ỹmis as Y ========== mis π(θ Y mis ); π(θ, Y mis ) = π(θ Y mis )p(y mis ).

31 / 41 Advantages of Surrogate Distribution Surrogate distribution unifies different strategies under a common framework. For ASIS, a sampler involving surrogate distribution, but equivalent to the original ASIS sampler, has fewer steps. If we are only interested in marginal distributions, surrogate distribution strategy is promising to produce more efficient algorithms.

32 / 41 Outline 1 Algorithm Review 2 Combining Strategies 3 Surrogate Distribution 4 Extensions on Cosmological Model 5 Conclusion

Model Review and New Data Recall: Level 1: Errors-in-variables regression: Level 2: ĉ i ˆx i ˆm Bi m Bi = µ i + M ɛ i αx i + βc i ; N c i x i m Bi, Ĉi, i = 1,..., n. M ɛ i N(M 0, σ 2 ɛ ); x i N(x 0, R 2 x ); c i N(c 0, R 2 c ). σ ɛ small = Standardizable candle Data: A JLA sample of 740 SNIa in Betoule, et al. (2014). 33 / 41

34 / 41 Shrinkage Estimation Low mean squared error estimates of M ɛ i Conditional Posterior Expectation of M i ε 19.6 19.4 19.2 19.0 18.8 18.6 95% CI 0.00 0.05 0.10 0.15 0.20 σ ε

35 / 41 Shrinkage Error Reduced standard deviations Conditional Posterior Standard Deviation of M i ε 0.00 0.05 0.10 0.15 0.20 95% CI 0.00 0.05 0.10 0.15 0.20 σ ε

36 / 41 Systematic Errors Systematic errors: seven sources of uncertainties. Blocks: different surveys. Effect on cosmological parameters: Ĉ stat vs Ĉstat + Ĉsys. 1.0 0.8 0.6 Ω Λ 0.4 0.2 0.0 0.2 68% stat+sys 95% stat+sys 68% only stat 95% only stat 0.0 0.2 0.4 0.6 0.8 1.0 Ω m

Adjusting for Galaxy Mass: Method I Method I: Divide M ɛ i by w i = log 10 (M galaxy /M ); { M ɛ i N(M 01, σ 2 ɛ1 ), if w i < 10, M ɛ i N(M 02, σ 2 ɛ2 ), if w i > 10. 5 6 7 8 9 10 11 12 19.4 19.3 19.2 19.1 19.0 18.9 18.8 wi 0 2 4 6 8 10 12 19.4 19.3 19.2 19.1 19.0 18.9 18.8 Density posterior mean of M i ε 0 2 4 6 8 10 12 19.4 19.3 19.2 19.1 19.0 18.9 18.8 Density 37 / 41

Adjusting for Galaxy Mass: Method II Much scatter in both M i and w i. 4 6 8 10 12 19.4 19.3 19.2 19.1 19.0 18.9 18.8 w i posterior mean of M i ε Treat w i as covariate like x i and c i, ŵ i N(w i, ˆσ 2 w): m Bi = µ i + M ɛ i αx i + βc i + γw i. 0.05 0.00 0.05 0.10 0 10 20 30 γ Density 38 / 41

Model Checking Model setting: Fix (Ω m,ω Λ ); m Bi = µ i + M ɛ i αx i + βc i ; µ i = µ(z i, Ω m, Ω Λ, H 0 )+t(z i ), t(z i ) cubic spline Results: Red line posterior mean; Gray band 95% region; Black dots ( ˆm Bi M 0 + αˆx i βĉ i ) µ i. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.0 0.2 0.4 z (red shift) µ mean µtheory Cubic Spline Curve Fitting (K=4) 39 / 41

40 / 41 Outline 1 Algorithm Review 2 Combining Strategies 3 Surrogate Distribution 4 Extensions on Cosmological Model 5 Conclusion

41 / 41 Conclusion Summary Combining strategy and surrogate distribution samplers are useful to produce more efficiency in convergence. The hierarchical Gaussian model reflects the underlying physical understanding of supernova cosmology. Future Work More numerical examples to illustrate the algorithms. Complete the theory of surrogate distribution strategy. Embed this hierarchical model into a model for the full time-series of the supernova explosion, using Gaussian process to impute apparent magnitudes over time.