Normal modes are eigenfunctions of T

Similar documents
9. Semiconductor Devices /Phonons

Optical Characterization of Solids

Optical Properties of Lattice Vibrations

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

The Dielectric Function of a Metal ( Jellium )

Lecture 8 Interband Transitions. Excitons

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

Minimal Update of Solid State Physics

Quantum Condensed Matter Physics Lecture 5

Chapter 4: Summary. Solve lattice vibration equation of one atom/unitcellcase Consider a set of ions M separated by a distance a,

Plasmons, polarons, polaritons

Optical Processes and Excitons

Lecture 10: Surface Plasmon Excitation. 5 nm

Second Quantization Model of Surface Plasmon Polariton at Metal Planar Surface

Phonons (Classical theory)

OPTICAL PROPERTIES of Nanomaterials

Exciton spectroscopy

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

Optical Properties of Solid from DFT

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Nanophysics: Main trends

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

3.23 Electrical, Optical, and Magnetic Properties of Materials

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Spectroscopy at nanometer scale

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

EELS, Surface Plasmon and Adsorbate Vibrations

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Coherent THz Noise Sources. T.M.Loftus Dr R.Donnan Dr T.Kreouzis Dr R.Dubrovka

Neutron and x-ray spectroscopy

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots

.O. Demokritov niversität Münster, Germany

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm

Non-Continuum Energy Transfer: Phonons

Optical Properties of Solids LM Herz Trinity Term 2014

Review of Semiconductor Physics

Physics of Semiconductors (Problems for report)

Solid Surfaces, Interfaces and Thin Films

QUANTUM WELLS, WIRES AND DOTS

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Neutron scattering from quantum materials

ECE280: Nano-Plasmonics and Its Applications. Week8

Spectroscopy at nanometer scale

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

CHAPTER 9 FUNDAMENTAL OPTICAL PROPERTIES OF SOLIDS

Plasmons, Polaritons, and Polarons

Polariton Condensation

Lecture contents. NNSE 618 Lecture #11

5.62 Physical Chemistry II Spring 2008

Summary: Thermodynamic Potentials and Conditions of Equilibrium

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Many-Body Problems and Quantum Field Theory

Nanomaterials and their Optical Applications

Draft of solution Exam TFY4220, Solid State Physics, 29. May 2015.

Superconductivity Induced Transparency

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Lecture 20 Optical Characterization 2

Photoelectron Spectroscopy

II Theory Of Surface Plasmon Resonance (SPR)

10. Optics of metals - plasmons

Quantum Information Processing with Electrons?

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures

The Electromagnetic Properties of Materials

The Oxford Solid State Basics

X-Ray Photoelectron Spectroscopy (XPS)-2

Plasmons, Surface Plasmons and Plasmonics

Basic Semiconductor Physics

In-class exercises. Day 1

Quantum Condensed Matter Physics Lecture 9

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

Chapter 3 Properties of Nanostructures

Phonon II Thermal Properties

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

X-Ray Photoelectron Spectroscopy (XPS)-2

Cooperative Phenomena

Local and regular plasma oscillations in bulk donor type semiconductors

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

The electronic structure of materials 1

Microcavity Exciton-Polariton

6.730 Physics for Solid State Applications

Review of Optical Properties of Materials

FYS Vår 2015 (Kondenserte fasers fysikk)

Ultrafast Relaxation Dynamics and Optical Properties of GaAs and GaAs-based Heterostructures

Doctor of Philosophy

GeSi Quantum Dot Superlattices

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

Classical Theory of Harmonic Crystals

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Physics of Low-Dimensional Semiconductor Structures

Lecture 15: Optoelectronic devices: Introduction

FYS Vår 2017 (Kondenserte fasers fysikk)

(DPHY 21) 1) a) Discuss the propagation of light in conducting surface. b) Discuss about the metallic reflection at oblique incidence.

Transcription:

Quasiparticles

Phonons N atom atoms in crystal 3N atom normal modes p atoms in the basis N atom /p unit cells N atom /p translational symmetries N atom /p k-vectors 3p modes for every k vector 3 acoustic branches and 3p-3 optical branches

Normal modes are eigenfunctions of T x x u u exp i lka mka nka t lmn These are eigenfunctions of T. k 1 2 3 y y u u exp i lka mka nka t lmn k 1 2 3 z z u u exp i lka mka nka t lmn k 1 2 3 T u u i lk a pa mk a qa nk a ra t x exp 1 1 2 2 3 3 x i lpk a1 qmk a2 rnk a3 u exp i lk a k 1 mk a2 nk a3 t x pqr lmn k exp x exp ilpka qmka rnka u 1 2 3 lmn

fcc 2 x dulmn 2 C m u u u u u u u u dt 2 x x x x x x x x l1mn lmn l1mn lmn lm1n lmn lm1n lmn x x x x x x x x ul 1mn 1ulmn ul 1mn1ulmn ulm1n 1ulmn ulm 1n 1ulmn y y y y y y y y ul 1mn ulmn ul 1mn ulmn ulm1n 1ulmn ulm 1n 1ulmn u z z lm z z 1 1 z z 1 1 z z n ulmn ulm n ulmn ul mn ulmn ul 1mn 1ulmn and similar expressions for the y and z motion

fcc Substitute the eigenfunctions of T into Newton's laws. l nkya x x x l m kxa m n kza ulmn uexp i lka1mka2nka3 uexp i. k k 2 2 2 http://lamp.tu-graz.ac.at/~hadley/ss1/phonons/fcc/fcc.html

3N degrees of freedom fcc phonons

Phonon dispersion Au From Springer Materials: Landholt Boernstein Database

Materials with the same crystal structure will have similar phonon dispersion relations Cu Au

fcc phonons energy spectral density internal energy density specific heat

NaCl 2 atoms/unit cell 6 equations 3 acoustic and 3 optical branches u x u x x x exp ika ka ka t v v exp ika ka ka t nml k 1 2 3 nml k 1 2 3

Two atoms per primitive unit cell NaCl Si

GaAs Hannes Brandner

http://lamp.tu-graz.ac.at/~hadley/ss1/phonons/phonontable.html

Phonon quasiparticle lifetime Phonons are the eigenstates of the linearized equations, not the full equations. Phonons have a finite lifetime that can be calculated by Fermi's golden rule. 2 2 f H i E E i f ph ph f i Occupation is determined by a master equation (not the Bose-Einstein function). dp 0 0 i 1 0 N 0 dt i0 P0 dp1 01 1 i N1 P 1 i1 dt P N dp N 0N 1N Ni i N dt

Acoustic attenuation The amplitude of a monocromatic sound wave decreases as the wave propagates through the crystal as the phonon quasiparticles decay into phonons with other frequencies and directions.

Raman Spectroscopy Inelastic light scattering k k K G C. V. Raman Phonons, magnons, plasmons, polaritons, excitons K 0

Raman Spectroscopy 0 X cos( t) X P 0Ecos( t) 0 X cos( t) Ecos( t) X There are components of the polarization that oscillate at.

Raman Spectroscopy Stokes: I( ) n k 1 anti-stokes: I ( ) nk

Raman spectroscopy

Magnons Magnons are excitations of the ordered ferromagnetic state

Longitudinal plasma waves nm 2 d y dt 2 nee E ney 0 d y nm dt 2 n e y 2 2 2 2 d y 2 0 2 p y dt 0 Plasma frequency p 2 ne m There is no magnetic component of the wave. 0 Kittel Plasma waves can be quantized like any other wave

Electron energy loss spectroscopy E n p EELS is often used to measure phonons

Electron energy loss spectroscopy Aluminum Plasmons 15.3 ev Surface plasmons 10.3 ev Magnesium Plasmons 10.6 ev Surface plasmons 7.1 ev

Transverse optical plasma waves The dispersion relation for light For a free electron gas 1 2 p 1 2 2 p 2 c 2 2 2 0 0 k 2 ck 2 2 2 Plasmons Kittel p ck 2 2 2 2

Surface Plasmons Waves in the electron density at the boundary of two materials. Surface plasmons have a lower frequency that bulk plasmons. This confines them to the interface.

Surface Plasmons High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy PHYSICAL REVIEW B 79, 041401 R 2009 Surface plasmons on nanoparticles are efficient at scattering light. Green and blue require different sized particles.

Nature Photonics Surface plasmons are used for biosensors.

Plasmon filter Plasmon modes on the other side of the metal films are excited. http://web.pdx.edu/~larosaa/applied_optics_464-564/lecture_notes_posted/2010_lecture-7_ SURFACE%20PLASMON%20POLARITONS%20AT%20%20METALINSULATOR%20INTERFACES/Lecture_on_the_Web_SURFAC E-PLASMONS-POLARITONS.pdf

Polaritons Transverse optical phonons will couple to photons with the same and k. photon dispersion avoided crossing Light Bragg reflects off the sound wave; sound Bragg reflects off the light wave.

Polaritons The dispersion relation for light c 2 2 2 0 0 k 2 For an insulator The description of polaritons is already built into the dielectric function.

Polaritons Ignore the loss term i 0 2 0 2 2 0 Use a common denominator Define L 2 2 2 0 0 0 2 2 0 2 2 0 0 L 2 2 L 2 2 0

Polaritons 2 2 2 L 2 2 2 0 c k 2 0 0 There are two solutions for every k, one for the upper branch and one for the lower branch. Polaritons are the normal modes near the avoided crossing. A gap exists in frequency.

Polaritons allow us to study the properties of phonons using optical measurements = 4.7E13 = 3.1E13 Kittel By looking at the reflectance in different crystal directions, you can determine the frequencies of the transverse optical phonons.

Polaritons and optical properties

Excitons Bound state of an electron and a hole in a semiconductor or insulator Mott Wannier excitons (like positronium)

Mott-Wannier Excitons Bound state of an electron and a hole in a semiconductor or insulator (like positronium) E Hydrogenic model e E * 4 2 2 nk, g 2 2 2 2 2 * * 32 0 n 2 mh me K Kittel

Excitons Gross & Marx

Excitons Biexcitons H 2? Kittel Metallic plasma droplets Observe with an infrared camera See: C. D. Jeffries, Electron-Hole Condensation in Semiconductors, Science 189 p. 955 (1975).