Bulk and shear viscosities for the Gribov-Zwanziger plasma

Similar documents
arxiv: v1 [nucl-th] 11 Sep 2013

arxiv: v1 [nucl-th] 2 Mar 2015

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Longitudinal thermalization via the chromo-weibel instability

arxiv: v1 [nucl-th] 9 Jun 2008

Perfect-fluid hydrodynamics for RHIC successes and problems

Rapidity Dependence of Transverse Momentum Correlations from Fluctuating Hydrodynamics

Anisotropic Hydrodynamics

arxiv: v1 [nucl-th] 11 Aug 2013

Constraining the QCD equation of state in hadron colliders

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter

arxiv: v1 [nucl-th] 3 Oct 2018

Introduction to Relativistic Hydrodynamics

Fluid dynamic propagation of initial baryon number perturbations

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T

Instabilities Driven Equilibration in Nuclear Collisions

arxiv: v1 [hep-ph] 18 Feb 2016

Relativistic hydrodynamics for heavy-ion physics

Viscosity of Quark-Gluon Plasma!

Status of viscous hydrodynamic code development

Strongly coupled plasma - hydrodynamics, thermalization and nonequilibrium behavior

Chemical composition of the decaying glasma

Isotropization from Color Field Condensate in heavy ion collisions

Introduction to Relativistic Heavy Ion Physics

Constraining the bulk viscosity of QCD

Termodynamics and Transport in Improved Holographic QCD

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee

arxiv: v1 [nucl-th] 7 Jan 2019

Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

The balance function in azimuthal angle is a measure of the transverse flow

From spectral functions to viscosity in the QuarkGluon Plasma

Fluid dynamics with a critical point

PART 2. Formalism of rela,vis,c ideal/viscous hydrodynamics

Hints of incomplete thermalization in RHIC data

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25

Recent lessons about hydrodynamics from holography

Away-Side Angular Correlations Associated with Heavy Quark Jets

QGP, Hydrodynamics and the AdS/CFT correspondence

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Heating up QGP: towards charm quark chemical equilibration

Mechanics of Materials and Structures

Photoproduction of vector mesons: from ultraperipheral to semi-central heavy ion collisions

arxiv:hep-ph/ v3 2 Jan 2001

J/Ψ-suppression in the hadron resonance gas

Far-from-equilibrium heavy quark energy loss at strong coupling

Instabilities in the Quark-Gluon Plasma

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT.

PoS(DIS2015)084. Saturation and geometrical scaling from small x deep inelastic ep scattering to high energy proton-proton and heavy ion collisions

Quark-gluon plasma from AdS/CFT Correspondence

arxiv: v1 [hep-lat] 22 Oct 2013

with IMC Hao Liu Institute of High Energy Physics, CAS UCLA collaboration with Mei Huang and Lang Yu

Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background

Evidence for hadronic deconfinement in p p collisions at 1.8 TeV

Thermal dilepton production from hot QCD

AdS/CFT and Second Order Viscous Hydrodynamics

Heavy Ions at the LHC: First Results

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation

Hadronic equation of state and relativistic heavy-ion collisions

Classical YM Dynamics and Turbulence Diffusion

Fluid Equations for Rarefied Gases

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

Fit to Gluon Propagator and Gribov Formula

Hybrid Model of Heavy-Ion Collisions at BES Energies with Dynamical Sources

Virtual photon polarization and dilepton anisotropy in relativistic nucleus-nucleus collisions

Hydrodynamics of fluids with spin

The QCD Equation of State at μ B > 0 from Lattice QCD

Lifshitz Hydrodynamics

Past, Present, and Future of the QGP Physics

Phenomenology of Heavy-Ion Collisions

arxiv: v2 [nucl-th] 24 Sep 2012

arxiv: v1 [nucl-th] 28 Nov 2017

Real time lattice simulations and heavy quarkonia beyond deconfinement

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv:hep-ph/ v2 8 Aug 2002

CHEMICAL POTENTIAL DEPENDENCE OF PARTICLE RATIOS WITHIN A UNIFIED THERMAL APPROACH

The time evolution of the quark gluon plasma in the early Universe

The direct photon puzzle

Towards new relativistic hydrodynamcis from AdS/CFT

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

Viscosity in strongly coupled gauge theories Lessons from string theory

Relativistic hydrodynamics at large gradients

Equilibration and decoupling of a relativistic gas in a Friedmann-Robertson-Walker spacetime

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions

arxiv:hep-ph/ v1 25 Aug 1995

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Dynamical equilibration of stronglyinteracting

Inter-brane distance stabilization by bulk Higgs field in RS model

Summary of Professional Accomplishments. Radosław Ryblewski

arxiv:hep-ph/ v3 5 Dec 2005

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

Transport Properties in Magnetic Field

Beam energy scan using a viscous hydro+cascade model: an update

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

arxiv:hep-ph/ v1 19 Feb 1999

Quantum properties of QCD string fragmentation

Implications of Poincaré symmetry for thermal field theories

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data

Transcription:

EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 215 Bulk and shear viscosities for the Gribov-Zwanziger plasma Wojciech Florkowski 1,a 1 Institute of Nuclear Physics, Polish Academy of Sciences ul. Radzikowskiego 152, 31-342 Kraków, Poland Abstract. The concept of the Gribov-Zwanziger plasma is introduced and used to calculate the bulk and shear viscosities of the system of gluons. The kinetic coefficients are obtained in two different ways which are shown to yield equivalent results. 1 Introduction In this contribution I report on the recent results obtained in collaboration with Radoslaw Ryblewski, Nan Su, and Konrad Tywoniuk [1, 2] describing the form of the bulk and shear viscosity coefficients for the Gribov-Zwanziger (GZ) plasma. The concept of the GZ plasma follows from the use of the dispersion relation E(k) = k 2 + γ4 G k 2 (1) for the gluons [3]. Here k is the three-momentum of gluons and E denotes their energy. The parameter γ G appears during the quantisation of the Yang-Mills theory. Equation (1) has been derived for the first time by Gribov in his famous paper [3]. It takes into account the expected behavior of gluons in the infrared, namely, a large energy cost connected with the excitation of soft modes and the corresponding reduction of the physical phase space [3 7]. The use of (1) suggests that interacting massless gluons are equivalent to non-interacting gluons having this very special form of the dispersion relation. Thermodynamic properties of the system with the particles obeying Eq. (1) have been worked out in Refs. [8, 9]. The main results follow directly from the use of (1) in the Bose-Einstein distribution function f GZ = 1 exp(e(k)/t) 1, where T is the system s temperature. This approach provides good agreement with the lattice results on thermodynamic variables [1]. Encouraged by the success connected with the use of the dispersion relation (1) in equilibrium, in Refs. [1, 2] we have made an attempt to construct a simple kinetic theory that incorporates (1) and may describe processes out of equilibrium. In particular, in [1] we have concentrated on the calculation of the bulk viscosity which attracts more and more attention in the last years [11 15]. a e-mail: wojciech.florkowski@ifj.edu.pl (2)

EPJ Web of Conferences 2 Lorentz covariance and boost-invariance 2.1 Reimplementation of Lorentz covariance At first it should be emphasised that the original dispersion relation (1) is derived in the Coulomb gauge which explicitly breaks Lorentz invariance. In order to regain a covariant framework, that is required for description of relativistic fluids, one has to make certain assumptions about the Lorentz transformation properties of the quantities that appear in Eq. (1). The strategy to recover the covariant description is not straightforward and we discuss this problem in greater detail in Ref. [2]. We choose the procedure where the Gribov dispersion relation (1) is transformed into the following covariant expression [1, 2] E(k u) = (k u) 2 + γ4 G (k u) 2. Here u is the four-velocity of the fluid element. We assume that the Coulomb gauge as well as the in-medium value of the Gribov parameter γ G are fixed in the local rest frame where u µ = (1,,, ). We introduce k k, which is the magnitude of the three-vector k (k x, k y, k ), and k = k 2 x + ky 2 such that the resulting four-vector k µ = (k, k) has standard Lorentz transformation properties with k 2 = k k =. 2.2 Boost-invariance One of the simplest ways to obtain the formulas for the kinetic coefficients is to analyse a (+1)- dimensional, boost-invariant and transversally homogeneous system. We stress that in contrast to the problem of Lorentz covariance, which is the fundamental issue connected with the use of the Coulomb gauge, imposing boost-invariance is just a technical method to facilitate our manipulations. The boost-invariant systems are characterised by the flow vector u µ = (t/τ,,, z/τ) [16]. In this case, all scalar functions of space and time depend only on the longitudinal proper time τ = t 2 z 2. One may furthermore introduce the boost-invariant variables v = k t k z and w = k t k z [17]. In this case the energy of the particle is given by the formula w E(τ, w, k ) = 2 τ + 2 k2 + γ 4 G. (4) w 2 + k 2 τ 2 The phase space integration measure in the three-momentum space can be written correspondingly as dk(...) = g (2π) 3 dw τ d 2 k (...), (5) where g is the number of internal degrees of freedom. We note that the phase space distribution function f, which is also a Lorentz scalar, may depend in our case only on τ, w and k, namely f = f (τ, w, k ) [17]. 3 Kinetic equation 3.1 Relaxation time approximation The arguments presented in [1, 2] suggest that we can use the standard kinetic equation in the relaxation-time approximation (RTA) of the form [18 2] f (τ, w, k ) τ = f GZ(τ, w, k ) f (τ, w, k ), (6) τ rel (τ) (3)

XLV International Symposium on Multiparticle Dynamics where τ rel is the relaxation time and the (effective) temperature T appearing in the equilibrium distribution function f GZ is determined from the equation dk E(τ, w, k ) f GZ (τ, w, k ) = dk E(τ, w, k ) f (τ, w, k ). (7) Equation (7) is known as the Landau matching condition for the energy. The formal solution of Eq. (6) is [21 23] f (τ, w, k ) = f (w, k )D(τ, τ ) + τ τ dτ τ rel (τ ) D(τ, τ ) f GZ (τ, w, k ), (8) where the damping function D(τ 2, τ 1 ) has the form [ τ2 ] dτ D(τ 2, τ 1 ) = exp. (9) τ 1 τ rel (τ) Inserting the solution (8) into the Landau matching condition (7) allows us to find the time dependence of the system s temperature, T(τ). This, in turn, when used back in (8), allows us to find the time dependence of various system s characteristics such as the energy density and transverse and longitudinal pressures. 3.2 Linear response method Besides the exact treatment of the kinetic equation that has been sketched above, we may use the linear respond method. In this case we seek the solution of Eq. (6) in the form f f GZ + δ f +, (1) where δ f = τ rel d f GZ /dτ. This leads directly to the following result δ f = E τ rel w 2 Tτ E 2 τ 2 1 γ 4 G ( ) w 2 2 + k 2 + c2 s f GZ (1 + f GZ ). (11) τ 2 The speed of sound squared, c 2 s, that appears in (11) can be obtained from the equation of state. The correction to the distribution function (11) can be used further to obtain the shear tensor π µν and the bulk pressure Π. These quantities define directly the bulk and shear viscosities if the Navier- Stokes limit is considered. Straightforward manipulations lead to the following expression for the bulk viscosity coefficient [1] ζ = g γ 5 G τ rel 3π 2 T [ dy c 2 s 1 y 4 ] 1 f 3 y 4 GZ (1 + f GZ ), (12) + 1 where f GZ = {exp[γ G y2 + y 2 /T] 1} 1. In the similar way we obtain the shear viscosity coefficient [1, 2] η = g γ 5 G τ rel 3π 2 T dy ( y 4 1 ) 2 y 4 + 1 f GZ(1 + f GZ ). (13)

EPJ Web of Conferences 1 1 P, P, P GeV 4 1 1 1 Τ rel 2fm 1 Τ rel 1fm.1 P P Τ rel.5fm. P.1.5 1 2 3 4 5 7 1 2 3 Τ fm. Figure 1. Time dependence of pressure for three different values of the relaxation times. The initial condition corresponds to the equilibrium state with the initial temperature T = T(τ ) = 6 MeV. The initial time is τ =.5 fm/c. 4 Numerical results Let us now turn back to the discussion of the exact solutions of the kinetic equation. Knowing the time dependence of the effective temperature T we find the longitudinal and transverse pressures from the equations w 2 [ γ 4 ] G P = dk 1 f, (14) τ 2 E(τ, w, k ) k 2 P = dk 2 E(τ, w, k ) [ 1 (w 2 /τ 2 + k 2 )2 γ 4 G (w 2 /τ 2 + k 2 )2 ] f, (15) and the total pressure is obtained as P = 1 3 (P + 2P ). We note that the parallel pressure acts in the direction of the beam axis. The transverse pressure acts in the transverse direction to the beam and is the same for all such directions. The numerical results for the time evolution of pressures is shown in Fig. 1. Knowing P and P we find the shear and bulk viscous pressures (in the general case the shear tensor π µν has 5 independent components, they are reduced to one independent variable π for (+1)D systems) π = 2 ( ) P P, 3 (16) Π = P P GZ. (17) The last two equations allow us to define the effective shear and bulk viscosities π = 4 η eff 3 τ, (18) Π = ζ eff τ. (19)

.1.2.3.4.5.6.1.2.3.4.5.6.12.1.8.6.4.2..6.5.4.3.2.1. XLV International Symposium on Multiparticle Dynamics.12.1 Ζ s Τ rel fm 1.8.6.4.2. linear response Ζ s Τ rel Τ rel.5fm Ζ s Τ rel Τ rel 1fm Ζ s Τ rel Τ rel 2fm.1.2.3.4.5.6 T GeV Figure 2. Temperature dependence of the bulk viscosity scaled by the relaxation time and entropy density. The triangles, circles and squares show the effective bulk viscosity for three different values of the relaxation time (defined in the figure), whereas the solid line shows the result of the linear-response formula..6.5.4 linear reponse Η s Τ rel Τ rel.5fm Η s Τ rel Τ rel 1fm Η s Τ rel Τ rel 2fm Η s Τ rel fm 1.3.2.1..1.2.3.4.5.6 T GeV Figure 3. The same as Fig. 2 but for the shear viscosity. The effective coefficients should agree with the standard coefficients when the system is close to equilibrium. This is demonstrated in Figs. 2 and 3.

EPJ Web of Conferences 5 Conclusions The Gribov-Zwanziger quantisation of the Yang-Mills theory leads to the dispersion relation that can be successfully used in the studies of gluon thermodynamics and kinetic theory. In this contribution we have presented the results for the bulk and shear viscosities of the Gribov-Zwanziger plasma. These results may be useful for future phenomenological applications for ultrarelativistic heavy-ion collisions. Acknowledgements: I thank my collaborators, Radoslaw Ryblewski, Nan Su, and Konrad Tywoniuk for very fruitful collaboration. This research has been supported in part by Polish National Science Center grants No. DEC-212/5/B/ST2/2528 and No. DEC-212/6/A/ST2/39. References [1] W. Florkowski, R. Ryblewski, N. Su, K. Tywoniuk (215), 154.3176 [2] W. Florkowski, R. Ryblewski, N. Su, K. Tywoniuk (215), 159.1242 [3] V.N. Gribov, Nucl. Phys. B139, 1 (1978) [4] D. Zwanziger, Nucl. Phys. B323, 513 (1989) [5] R.P. Feynman, Nucl. Phys. B188, 479 (1981) [6] Y.L. Dokshitzer, D.E. Kharzeev, Ann. Rev. Nucl. Part. Sci. 54, 487 (24), hep-ph/44216 [7] N. Su, K. Tywoniuk, Phys. Rev. Lett. 114, 16161 (215), 149.323 [8] D. Zwanziger, Phys. Rev. Lett. 94, 18231 (25), hep-ph/4713 [9] K. Fukushima, N. Su, Phys.Rev. D88, 768 (213), 134.84 [1] S. Borsanyi, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, JHEP 7, 56 (212), 124.6184 [11] P.B. Arnold, C. Dogan, G.D. Moore, Phys. Rev. D74, 8521 (26), hep-ph/6812 [12] H.B. Meyer, Phys. Rev. Lett. 1, 1621 (28), 71.3717 [13] D. Kharzeev, K. Tuchin, JHEP 9, 93 (28), 75.428 [14] G. Torrieri, I. Mishustin, Phys. Rev. C78, 2191 (28), 85.442 [15] G.D. Moore, O. Saremi, JHEP 9, 15 (28), 85.421 [16] J.D. Bjorken, Phys. Rev. D27, 14 (1983) [17] A. Bialas, W. Czyz, A. Dyrek, W. Florkowski, Nucl. Phys. B296, 611 (1988) [18] P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954) [19] G. Baym, Phys. Lett. B138, 18 (1984) [2] G. Baym, Nucl. Phys. A418, 525C (1984) [21] W. Florkowski, R. Ryblewski, M. Strickland, Nucl.Phys. A916, 249 (213), 134.665 [22] W. Florkowski, R. Ryblewski, M. Strickland, Phys.Rev. C88, 2493 (213), 135.7234 [23] W. Florkowski, E. Maksymiuk, R. Ryblewski, M. Strickland, Phys. Rev. C89, 5498 (214), 142.7348