DynamicsofTwoCoupledVanderPolOscillatorswithDelayCouplingRevisited

Similar documents
Dynamics of Two Coupled van der Pol Oscillators with Delay Coupling Revisited

Chapter 14 Three Ways of Treating a Linear Delay Differential Equation

Three ways of treating a linear delay differential equation

GlobalExistenceandUniquenessoftheWeakSolutioninKellerSegelModel

Journal of Applied Nonlinear Dynamics

DYNAMICS OF THREE COUPLED VAN DER POL OSCILLATORS WITH APPLICATION TO CIRCADIAN RHYTHMS

Journal of Applied Nonlinear Dynamics

2:1:1 Resonance in the Quasi-Periodic Mathieu Equation

2:1 Resonance in the delayed nonlinear Mathieu equation

2:2:1 Resonance in the Quasiperiodic Mathieu Equation

EffectofVariableThermalConductivityHeatSourceSinkNearaStagnationPointonaLinearlyStretchingSheetusingHPM

CertainFractionalDerivativeFormulaeInvolvingtheProductofaGeneralClassofPolynomialsandtheMultivariableGimelFunction

DETC DELAY DIFFERENTIAL EQUATIONS IN THE DYNAMICS OF GENE COPYING

QuasiHadamardProductofCertainStarlikeandConvexFunctions

Strictly as per the compliance and regulations of:

BoundsonVertexZagrebIndicesofGraphs

Some Statistical Properties of Exponentiated Weighted Weibull Distribution

Some Indefinite Integrals in the Light of Hypergeometric Function

ANoteontheRepresentationandDefinitionofDualSplitSemiQuaternionsAlgebra

Global Existence of Classical Solutions for a Class Nonlinear Parabolic Equations

α Cubic nonlinearity coefficient. ISSN: x DOI: : /JOEMS

OnaGeneralClassofMultipleEulerianIntegralswithMultivariableAlephFunctions

Research Article A Note on the Solutions of the Van der Pol and Duffing Equations Using a Linearisation Method

Two models for the parametric forcing of a nonlinear oscillator

Coupled Parametrically Driven Modes in Synchrotron Dynamics

SolitaryWaveSolutionsfortheGeneralizedZakharovKuznetsovBenjaminBonaMahonyNonlinearEvolutionEquation

NONLINEAR NORMAL MODES OF COUPLED SELF-EXCITED OSCILLATORS

Non-linear Dynamics in Queueing Theory: Determining Size of Oscillations in Queues with Delayed Information

AClassofMultivalentHarmonicFunctionsInvolvingSalageanOperator

OnSpecialPairsofPythagoreanTriangles

Solving Third Order Three-Point Boundary Value Problem on Time Scales by Solution Matching Using Differential Inequalities

Available online at ScienceDirect. Procedia IUTAM 19 (2016 ) IUTAM Symposium Analytical Methods in Nonlinear Dynamics

TheRoleofComplexElectricPermittivityandMagneticPermeabilityinLeftHandedMaterials

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

Additive resonances of a controlled van der Pol-Duffing oscillator

AdaptiveFilters. GJRE-F Classification : FOR Code:

Helical-One, Two, Three-Revolutional CyclicalSurfaces

A Model of Evolutionary Dynamics with Quasiperiodic Forcing

Keywords: semigroup, group, centre piece, eigen values, subelement, magic sum. GJSFR-F Classification : FOR Code : MSC 2010: 16W22

Differential-Delay Equations

Certain Indefinite Integrals Involving Laguerre Polynomials

MCE693/793: Analysis and Control of Nonlinear Systems

Generalized I-convergent DifferenceSequence Spaces defined by a ModuliSequence

Metric Boolean Algebras and an Application To Propositional Logic

7 Pendulum. Part II: More complicated situations

The Effect of Variation of Meteorological Parameters on the Tropospheric Radio Refractivity for Minna

Citation Acta Mechanica Sinica/Lixue Xuebao, 2009, v. 25 n. 5, p The original publication is available at

Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay

ModelofHighTemperatureHeatTransferinMetals

Journal of Applied Nonlinear Dynamics

Frequency locking in a forced Mathieu van der Pol Duffing system

Application of the perturbation iteration method to boundary layer type problems

THREE PROBLEMS OF RESONANCE IN COUPLED OR DRIVEN OSCILLATOR SYSTEMS

Hopf Bifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators

A Numerical Solution of Classical Van der Pol-Duffing Oscillator by He s Parameter-Expansion Method

Assignment 6. Using the result for the Lagrangian for a double pendulum in Problem 1.22, we get

Solving the Van Der Pol nonlinear differential equation using first order approximation perturbation method

Dynamics of four coupled phase-only oscillators

Dynamics of a mass-spring-pendulum system with vastly different frequencies

A plane autonomous system is a pair of simultaneous first-order differential equations,

1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system:

Linear and Nonlinear Oscillators (Lecture 2)

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs

EE222 - Spring 16 - Lecture 2 Notes 1

Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber

Improving convergence of incremental harmonic balance method using homotopy analysis method

7 Two-dimensional bifurcations

Existence of permanent oscillations for a ring of coupled van der Pol oscillators with time delays

Autoparametric Resonance of Relaxation Oscillations

The Distribution of Cube Root Transformation of the Error Component of the Multiplicative Time Series Model

WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY

EntransyEffectivenessforAnalysisofHeatExchangers

Effect of First Order Chemical Reaction for Coriolis Force and Dust Particles for Small Reynolds Number in the Atmosphere Over Territory

Intuitionistic L-Fuzzy Rings. By K. Meena & K. V. Thomas Bharata Mata College, Thrikkakara

TWELVE LIMIT CYCLES IN A CUBIC ORDER PLANAR SYSTEM WITH Z 2 -SYMMETRY. P. Yu 1,2 and M. Han 1

THREE PROBLEMS IN NONLINEAR DYNAMICS WITH 2:1 PARAMETRIC EXCITATION

Solutions of Nonlinear Oscillators by Iteration Perturbation Method

DYNAMICS OF THREE COUPLED VAN DER POL OSCILLATORS WITH APPLICATION TO CIRCADIAN RHYTHMS

Higher Order Averaging : periodic solutions, linear systems and an application

Bifurcation Trees of Periodic Motions to Chaos in a Parametric, Quadratic Nonlinear Oscillator

High-Gain Observers in Nonlinear Feedback Control. Lecture # 3 Regulation

An Efficient Method for Studying Weak Resonant Double Hopf Bifurcation in Nonlinear Systems with Delayed Feedbacks

QuasiHadamardProductofCertainStarlikeandConvexPValentFunctions

Research Article Stability Switches and Hopf Bifurcations in a Second-Order Complex Delay Equation

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7)

Difference Resonances in a controlled van der Pol-Duffing oscillator involving time. delay

MIT Weakly Nonlinear Things: Oscillators.

New interpretation of homotopy perturbation method

nonlinear oscillators. method of averaging

Phase Synchronization

An introduction to Birkhoff normal form

Bifurcation of Fixed Points

Network Security Based on Quantum Cryptography Multi-qubit Hadamard Matrices

violent offenses, social interaction theory, ambient temperature, geographic

On The Comparison of Two Methods of Analyzing Panel Data Using Simulated Data

Singular perturbation methods for slow fast dynamics

BIFURCATIONS OF PERIODIC ORBITS IN THREE-WELL DUFFING SYSTEM WITH A PHASE SHIFT

(Refer Slide Time: 00:32)

Nonlinear Control Lecture # 36 Tracking & Regulation. Nonlinear Control

Perturbation theory for anharmonic oscillations

Transcription:

Global Journal of Science Frontier Research: F Mathematics and Decision Sciences Volume 7 Issue 5 Version.0 Year 07 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. USA Online ISSN: 49-466 & Print ISSN: 0975-5896 Dynamics of Two Coupled Van der Pol Oscillators with Delay Coupling Revisited By Mark Gluzman & Richard Rand Cornell University, United States Abstract- The problem of two van der Pol oscillators coupled by velocity delay terms was studied by Wirkus and Rand in 00 [5]. The small-εε analysis resulted in a slow flow which contained delay terms. To simplify the analysis, Wirkus and Rand followed a common procedure of replacing the delay terms by non-delayed terms, a step said to be valid for small εε, resulting in a slow flow which was an ODE rather than a DDE delay-differential equation. In the present paper we consider the same problem but leave the delay terms in the slow flow, there by offering an evaluation of the approximate simplification made in [5]. GJSFR-F Classification: MSC 00: 00A69 DynamicsofTwoCoupledVanderPolOscillatorswithDelayCouplingRevisited Strictly as per the compliance and regulations of : 07. Mark Gluzman & Richard Rand. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/, permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ref 4. Sah, S.M. and Rand, R.H. 06 Delay Terms in the Slow Flow, Journal of Applied Nonlinear Dynamics 54:47-484. Dynamics of Two Coupled Van der Pol Oscillators with Delay Coupling Revisited Mark Gluzman α & Richard Rand σ Abstract- The problem of two van der Pol oscillators coupled by velocity delay terms was studied by Wirkus and Rand in 00 [5]. The small-εε analysis resulted in a slow flow which contained delay terms. To simplify the analysis, Wirkus and Rand followed a common procedure of replacing the delay terms by non-delayed terms, a step said to be valid for small εε, resulting in a slow flow which was an ODE rather than a DDE delay-differential equation. In the present paper we consider the same problem but leave the delay terms in the slow flow, thereby offering an evaluation of the approximate simplification made in [5]. I. Introduction In a recent paper by Sah and Rand [4], it was shown that a class of nonlinear oscillators with delayed self-feedback gave rise via a perturbation solution to a DDE slow flow. An exact solution was obtained to the DDE slow flow and was compared to the approximate solution resulting from the common approach of replacing the delayed variables in the slow flow with non-delayed variables, thereby replacing the DDE slow flow with an easier to solve ODE slow flow. The paper by Sah and Rand [4] was motivated by numerous papers in the literature of nonlinear dynamics in which the DDE slow flow is replaced by an approximate ODE slow flow, for example [], [], [5]. In particular, in 00 Wirkus and Rand wrote a paper entitled \The Dynamics of Two Coupled van der Pol Oscillators with Delay Coupling" [5] in which averaging was used to derive a slow flow which governed the stability of the in-phase mode. In studying the resulting slow flow, Wirkus and Rand replaced certain delayed quantities with non-delayed versions in order to simplify the analysis. In this paper we reexamine the previously studied system with the idea of leaving the delayed quantities in the slow flow. II. The governing equations are: Delay-Coupled Van Der Pol Oscillators ẍ + x ε x ẋ = εαẋ t T ẍ + x ε x ẋ = εαẋ t T Global Journal of Science Frontier Research Volume XVII Issue V V ersion I Year 07 F Author α: Center for Applied Mathematics Cornell University. Author σ: Dept. Mathematics and Dept. Mechanical and Aerospace Engineering, Cornell University. e-mail: rrand@cornell.edu 07 Global Journals Inc. US

Global Journal of Science Frontier Research Volume XVII Issue V V ersion I Year 07 F This system admits an in-phase mode in which xx = xx = yytt where In order to investigate the stability of the in - phase mode y t, we will first obtain an approximate expression for it using Lindstedt's method. We replace independent variable t by stretched time τ: so that eq.3 becomes: where primes represent differentiation with respect to τ. We expand y in a power series in ε, y = y 0 + εy + 6 and substitute 6 into 5. After collecting terms, we get We take the solution of 7 to be and substitute 9 into 8, giving Removing secular terms in 0, we obtain Thus the in-phase mode by the approximation III. ÿ + y ε y ẏ = εαẏt T τ = ωt, where ω = + εk + Oε ω y + y ε y ωy = εαωy τ ωt y 0 + y 0 y + y = ky 0 + y0y 0 + αy 0τ T x = x = yt, the stability of which is desired, is given Stability of the in-phase Mode In order to study the stability of the motion, we set where w and w are deviations off of the in-phase mode x = x = yt. Substituting 3 into and and using 3, we obtain the following equations on w and w, linearized about w = w = 0: Equations 4 and 5 can be uncoupled by setting = 0 7 y 0 = R cos τ y + y = kr + αr sin T cos τ + R + R3 R3 αr cos T sin τ + sin3τ 0 4 4 k = α sin T and R = + α cos T yt = R cos ωt = + α cos T cos α ε sin T t x = yt + w and x = yt + w ẅ + + εyẏw ε y ẇ = εαẇ t T ẅ + + εyẏw ε y ẇ = εαẇ t T z = w + w and z = w w 3 4 5 8 9 3 4 5 6 Notes 07 Global Journals Inc. US

Giving z + + εyẏz ε y ż = εαż t T 7 Ref. Atay, F.M. 998 Van der Pol's oscillator under delayed feedback, Journal of Sound and Vibration 8: 333-339. The only difference between these two equations is the sign of the right-hand side, which may be absorbed into a new coefficient, call it β, which equals either or -: where u = z for β = and u = z for β =. In eq.9, yt is given by eq.. In order to study the boundedness of solutions to eq.9, we return to using τ =ωt as independent variable, where ω = αε sin T : We study 0 by using the two variable perturbation method [3]. We let ξ=τ and η = ετ, giving: where yξ = R cos ξ, R = + α cos T, ω = αε sin T and where we have neglected terms of Oε. Now we expand u = u 0 + εu + Oε and collect terms, giving: We take the solution of in the form Note that z + + εyẏz ε y ż = εαż t T 8 ü + + εyẏu ε y u = εβα ut T ω u + + εωyy u ε y ωu = εβαωu τ ωt 0 ω u ξξ + u ξη + + εωyy ξ u ε y ωu ξ = εβαωu ξ ξ ωt, η εωt u 0ξξ + u 0 = 0 u ξξ + u = u 0ξ η α sin T u 0ξξ + 8 + α cos T cos ξ sin ξ u 0 where Substituting 4,5 into 3 and eliminating secular terms gives the slow flow d A d η The slow flow 6,7 is a system of linear delay-differential equations DDEs. A common approach to treating such a system is to replace the delayed variables by nondelayed variables, as in A d = A and B d = B. To support such a step, it is often argued that since a Taylor expansion gives Aη εt = Aη + Oε, the replacement of A d by A is an approximation valid for small ε [],[],[4]. Let us follow this procedure and see what we get, and then compare results with what we would get by treating the system as a DDE. Replacing A d and B d by A and B, we obtain the ODE system: 4 + α cos T cos ξ u0 ξ + αβu 0ξ ξ T, η εt 3 u 0 = Aη cos ξ + Bη sin ξ 4 u 0 ξ T, η εt = A d cosξ T + B d sinξ T A d = Aη εt and B d = Bη εt 5 = A 3 α A cos T d B d η d dη = α A sin T A B + α B sin T α B cos T + α A d β cos T + α A d β sin T = + αβ 3 cos T α β sin T β sin T β cos T α α α β B d sin T + α β B d cos T A B 9 6 7 8 Global Journal of Science Frontier Research Volume XVII Issue V V ersion I Year 07 3F 07 Global Journals Inc. US

Global Journal of Science Frontier Research Volume XVII Issue V V ersion I Year 07 4F Recall from eqs.7-9 that there are two cases, β = + and β =. In the case that β =, the system 8 becomes: d A α cos T α sin T A = 9 dη B α sin T α cos T B This system of ODEs exhibits both Hopf and saddle-node bifurcations. The Hopf bifurcations occur when the trace = 3α cos T = 0 with positive determinant, i.e. when Hopf bifurcations: α = 30 3 cos T The saddle-node bifurcations occur when the determinant = α + α cos T + α cos T = 0, i.e. when Now let us consider the other case, β = +. In this case the ODE system 8 becomes: From eq. we see that the amplitude of the in-phase mode, whose stability we are investigating, is given by R = + α cos T. Inspection of 3 shows that that system exhibits the birth of the in-phase mode when birth of the in-phase mode: α = 33 cos T We note that all of the bifurcations 30,3,33 were observed by Wirkus and Rand [5] in their original work on this system. In what follows, we return to the DDE system 6-7, but we do not make the simplifying assumption of replacing A d by A and B d by B. In order to treat the DDE system, we set: where P and Q are constants. We are particularly interested in the effect of the DDE slow flow on Hopf bifurcations, eq.30. Thus we restrict ourselves to the case β =, whereby we obtain the following pair of algebraic equations on P and Q: For a nontrivial solution, the determinant must vanish: saddle-node bifurcations: α = 0 and α = cos T + cos T d dη A B = α cos T 0 0 0 A B 3 A = P e λη, B = Qe λη, A d = P e λη εt, B d = Qe λη εt 34 α e λ ε T cos T 3 α cos T α e λ λ ε T sin T + α sin T P = 0 α e λ ε T sin T α sin T α e λ ε T cos T α cos T λ Q 0 α cos T λ e ε T λ α sin T e ε T λ T λ α cos T e ε + + α e ε T λ 3 35 Notes 5. Wirkus, S. and Rand, R. 00 Dynamics of Two Coupled van der Pol Oscillators with Delay Coupling, Nonlinear Dynamics 30:05-. + α e ε T λ 4 + λ + α cos T λ + λ α sin T + α cos T + 3 α 4 = 0 36 07 Global Journals Inc. US

Ref. Morrison, T.M. and Rand, R.H. 007 : Resonance in the delayed nonlinear Mathieu equation, Nonlinear Dynamics 50: 34-35. For ε=0 and β = the DDE system 6, 7 reduces to the ODE system 9, which exhibits a Hopf bifurcation 30 when α =. By determining the location 3 cos T of the associated Hopf bifurcation in 36 for ε > 0 we may assess the accuracy of the often made approximation based on replacing the delayed variables in the slow flow with non-delayed variables. In the case of the ODE system 9, we obtained the conditions for a Hopf bifurcation, namely that there be a pair of pure imaginary eigenvalues, by requiring the trace of the matrix 9 to be zero. In the case of the DDE system 6, 7, we seek a Hopf bifurcation by setting λ = iω in 36. We seek a solution to 36 in the form of a perturbation series in ε by expanding T = T 0 + εt + ε T + 37 Ω = Ω 0 + εω + ε Ω + 38 Separating 36 into real and imaginary parts and collecting like powers of ε allows us to obtain the following expressions: cos T 0 = 3α Ω 0 = 9 α 3 T = 9 α T 0 9 Ω = 8 α 5 T 0 54 9 α 9 α 7 α 6 T 0 + 6 α 4 36 α + T 0 T = 43 458 α 6 9α 809 α 6 + 5346α 4 06α + 9T 0 + 9α 648α 4 34 α + 40T 0 Ω = IV. 57464 α 4 69984 α + 7776 Results and Conclusions To summarize our treatment of the original coupled van der Pol eqs.,, we first used Lindstedt's method to obtain an approximate expression for the in-phase mode, eq.. Then we studied the stability of the in-phase mode by applying the two variable perturbation method to eq.0. This resulted in the DDE slow flow 6, 7. We investigated this system of equations in two ways: First we followed a number of other works [],[],[4] by replacing the delayed variables A d and B d by non-delayed variables A and B. This resulted in a system of ODEs 8 which possessed Hopf and saddle-node bifurcations, in agreement with the earlier work of Wirkus and Rand [5]. Then we treated the slow flow system 6,7 as DDEs which resulted in a transcendental characteristic equation 36 which is harder to solve than the more familiar polynomial characteristic equations of ODEs. We sought a series solution 37, 38 and obtained the results listed in eqs.39-44. The results are plotted in Fig. where we show the critical delay for Hopf bifurcation THopf versus coupling strength α for ε = 0.5. The dashed curve is the analytical 39 40 4 4 44 Global Journal of Science Frontier Research Volume XVII Issue V V ersion I Year 07 5F 07 Global Journals Inc. US

Global Journal of Science Frontier Research Volume XVII Issue V V ersion I Year 07 6F approximation based on replacing the delay terms in the slow flow 6,7 by nondelayed variables, as in A d = A and B d =B. Thus the dashed curve corresponds to ε = 0. The dash-dot curve and the solid curve correspond to the analytical approximations respectively given by - and 3-term truncations of eq.37. The + signs represent stability transitions obtained by numerical integration of the DDEs 6-7. The comparison between the various approximations for the critical delay for Hopf bifurcation shown in Fig. is further explored in Table, where we list the errors obtained using -, - and 3-term truncations of eq.37 compared to values obtained by numerical integration of the DDEs 6-7. The maximum error is computed over the set α [, 3 ]. Here α = is chosen because α, T =, 3π is a point of intersection 3 3 4 of the bifurcation curves α = cost and, compare eqs.30,3. We consider +cos T α= absolute error max T α T n α, relative error max, and percent error α [ max α [ 3, ] T α Tnα 3, ] T α 00%, where T α is the value we get by numerical integration of the DDEs 6-7 and T n α is the value given by the n-term truncation of eq.37. We also note that the maximum in all three cases was attained at α =. As previously noted, replacing the delay terms in the slow flow 6,7 by non delayed variables means that we take only the first term in eq.37 and n =. In this case, the error incurred by omitting the delay terms in the slow flow is generally about 3 to 5% for small values of ε. On the other hand, the 3-term truncation of eq.37 typically has the percent error less than %. 3 cos T T α Tnα α [ 3, ] T α Notes Figure : Critical delay for Hopf bifurcation versus αα for εε = 0.5. Dashed curve is the analytical approximation based on replacing the delay terms in the slow flow 6, 7 by non-delayed variables, as in A d = A and B d = B. Thus the dashed curve corresponds to εε = 0. The dash-dot curve and the solid curve correspond to the analytical approximations respectively given by - and 3-term truncations of eq.37. The + signs represent stability transitions obtained by numerical integration of the DDEs 6-7. 07 Global Journals Inc. US

Notes Table : Errors in critical delay for Hopf bifurcation produced by -, - and 3-term truncations of eq.37 as compared to values obtained by numerical integration of the slow flow 6-7. The errors are defined as absolute error max T α T n α, α [ 3, ] relative error max, and percent error max T α T α 00%, where T α is the value we get by numerical integration of the DDEs 6-7 and T n α value given by the n-term truncation of eq.37. α [ 3, ] T α Tnα ε = 0. ε = 0.3 ε = 0.5 n terms in 37 n= n= n=3 n= n= n=3 n= n= n=3 absolute error 0.056 0.005 0.00 0.499 0.085 0.003 0.8 0.0756 0.0 relative error 0.0307 0.003 0.0005 0.085 0.06 0.007 0.3 0.0447 0.007 percent error 3.07% 0.3% 0.05% 8.5%.6% 0.7% 3.% 4.47% 0.7% V. Acknowledgement The authors thank Alex Bernstein for reading the manuscript. T α Tnα α [ 3, ] References Références Referencias is the. Atay, F.M. 998 Van der Pol's oscillator under delayed feedback, Journal of Sound and Vibration 8: 333-339.. Morrison, T.M. and Rand, R.H. 007 : Resonance in the delayed nonlinear Mathieu equation, Nonlinear Dynamics 50: 34-35 3. Rand, R.H. 0 Lecture Notes in Nonlinear Vibrations, published on-line by The Internet-First University Press. http://ecommons.library.cornell.edu/handle/83 /8989 4. Sah, S.M. and Rand, R.H. 06 Delay Terms in the Slow Flow, Journal of Applied Nonlinear Dynamics 54:47-484 5. Wirkus, S. and Rand, R. 00 Dynamics of Two Coupled van der Pol Oscillators with Delay Coupling, Nonlinear Dynamics 30:05-. Global Journal of Science Frontier Research Volume XVII Issue V V ersion I Year 07 7F 07 Global Journals Inc. US

Global Journal of Science Frontier Research Volume XVII Issue V V ersion I Year 07 8F This page is intentionally left blank 07 Global Journals Inc. US