The Rocket Equation. Lukas Lundin. 26th January 2016

Similar documents
Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision

F ij = Gm im j r i r j 3 ( r i r j ).

Newton's second law of motion

F ij = Gm im j r i r j 3 ( r j r i ).

VARIABLE MASS PROBLEMS

Basic Ascent Performance Analyses

Problem Set 4 Momentum and Continuous Mass Flow Solutions

Momentum in the dynamics of variable-mass systems: classical and relativistic case. Janusz Wolny* and Radosław Strzałka. Poland.

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision.

Physics for Scientists and Engineers. Chapter 5 Force and Motion

Linear Momentum. Lana Sheridan. Nov 6, De Anza College

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17

Dynamics of Systems of Particles. Hasbun, Ch 11 Thornton & Marion, Ch 9

The Rotating Spring. ω Rotating spring. Spring at rest. x L. x' L' Jacob Gade Koefoed

First Year Physics: Prelims CP1. Classical Mechanics: Prof. Neville Harnew. Problem Set III : Projectiles, rocket motion and motion in E & B fields

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc.

Chapter 9 Linear Momentum and Collisions

Chapter 9. Center of Mass and Linear Momentum

3 Space curvilinear motion, motion in non-inertial frames

Chapter 9. Linear Momentum and Collisions

General Physics I. Lecture 3: Newton's Laws. Prof. WAN, Xin ( 万歆 )

Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017

Conservation of Momentum. Last modified: 08/05/2018

Multistage Rocket Performance Project Two

Exam 2: Equation Summary

Physics 20 Homework 3 SIMS 2016

Quiz Samples for Chapter 9 Center of Mass and Linear Momentum

PHYS103 Sec 901 Hour Exam No. 2 Page: 1

PHYS103 Sec 901 Hour Exam No. 2 Page: 1

PHYS207 Lecture Notes. J.K. Brosch Department of Physics and Astronomy, University of Delaware Sharp Lab, 102

Chapter 9. Linear Momentum

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 8

Chapter 8 LINEAR MOMENTUM AND COLLISIONS

LINEAR MOMENTUM. Contents. (A. Savas ARAPO GLU) July 16, Introduction 2. 2 Linear Momentum 2

Chapter 7 Rocket Propulsion Physics

Gravity Turn Concept. Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate

Thermal Radiation Studies for an Electron-Positron Annihilation Propulsion System

Model Rocketry. The Science Behind the Fun

California State Science Fair

Rocket Propulsion. Combustion chamber Throat Nozzle

What are Numerical Methods? (1/3)

Further Applications of Newton's. Laws of Motion

03. Simple Dynamical Systems

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts)

Newton's Second Law of Motion: Concept of a System

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Gravitational Potential Energy and Total Energy *

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term Exam 2 Solutions

expression that describes these corrections with the accuracy of the order of 4. frame usually connected with extragalactic objects.

Rocket Thermodynamics

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

TALLINN UNIVERSITY OF TECHNOLOGY, DIVISION OF PHYSICS 13. STOKES METHOD

Get Discount Coupons for your Coaching institute and FREE Study Material at Force System

Linear Momentum Isolated Systems Nonisolated Systems: Impulse

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations

Lecture Outlines Chapter 9. Physics, 3 rd Edition James S. Walker

Time Evolution of Speed

Laws of Conservation 2.1 INTRODUCTION. 2.2 CONSERVATIVE AND NON CONSERVATIVE FORCES Conservative Force. Properties of Conservative Force

Rocket Science 102 : Energy Analysis, Available vs Required

A j = 0.1 cm 2 10 cm 10 cm 10 cm. W j Wj. W j W j. W j. 10 cm 10 cm 10 cm. r i

Chapter 5. Sound Waves and Vortices. 5.1 Sound waves

Rocket Dynamics. Forces on the Rocket

EXTERNAL-JET (FLUID) PROPULSION ANALOGY FOR PHOTONIC (LASER) PROPULSION By John R. Cipolla, Copyright February 21, 2017

High-Power Rocketry. Calculating the motion of a rocket for purely vertical flight.

The motion of a Rocket

Robotic Mobility Atmospheric Flight

Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle

Center of Mass and Linear

Gravitational potential energy *

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN

THE MAXIMUM VELOCITY OF A FALLING BODY

Introductory Physics. Week 2015/06/26

Gravitation fundamentals. By: Sunil Kumar Singh

where s is the horizontal range, in this case 50 yards. Note that as long as the initial speed of the bullet is great enough to let it hit a target at

Classical Mechanics LECTURE 3: DIMENSIONAL ANALYSIS & NEWTON S LAWS. Prof. N. Harnew University of Oxford MT 2016

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

Work - kinetic energy theorem for rotational motion *

Quiz Number 3 PHYSICS March 11, 2009

MODELLING OF FLEXIBLE MECHANICAL SYSTEMS THROUGH APPROXIMATED EIGENFUNCTIONS L. Menini A. Tornambe L. Zaccarian Dip. Informatica, Sistemi e Produzione

Robotic Mobility Atmospheric Flight

Class 4 Newton s laws of motion. I : Newton s laws of motion

Chapter 5. Force and Motion I

Physics H7A, Fall 2011 Homework 6 Solutions

P 1 P * 1 T P * 1 T 1 T * 1. s 1 P 1

Math Lecture 9

Exercise 7: Thrust and the Rocket Equation

Chapter 2: First Order ODE 2.4 Examples of such ODE Mo

U U B U P x

Introductory Physics. Week 2015/06/26

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

Rocket Propulsion Basics Thrust

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS

First Law of Thermodyamics U = Q + W. We can rewrite this by introducing two physical. Enthalpy, H, is the quantity U + pv, as this

Newton s Laws of Motion, Energy and Oscillations

Physics 430, Classical Mechanics Exam 1, 2010 Oct 05

Newton s Laws of Motion and Gravitation

The physical nature of the basic concepts of physics. 1. Linear Momentum

Dimensional Analysis

Transcription:

The Rocket Equation Lukas Lundin 26th January 2016

Abstract In this project we study the basics of rocket propulsion and rocket motion in the vicinity of the Earth. Furthermore we will compare dierent designs of rockets. The conclusions that we reach are not sucient for a realistic description and applications.

Contents 1 Introduction 3 2 Isolated system 3 3 External forces 4 3.1 Gravity................................ 5 3.2 Air resistance............................. 6 4 Design examples 7 5 Final words 8

1 Introduction Newton's third law of motion dictates that for every action there is an equal and opposite reaction. This can work as a way to create motion for a system through acting on surroundings of the system. This, however, does does not work when the system is isolated, i.e. when there is no action that can be caused on the surrounding. To solve this one can have a system that ejects part of its own mass to get the reacting force, though the system as a whole will still be isolated. This way of achieving motion is called rocket propulsion and is used in many areas, from warfare to research. [1, 2] The purpose of this paper is to describe the basics of rocket propulsion and motion in the vicinity of the Earth. 2 Isolated system The analysis that follows will be similar to that presented in [3]. Consider an object that's travelling without external forces acting on it in one dimension. Let's assume an inertial observer and consider the observed object to be say, a rocket. Then consider the system composed of the rocket together with its propellant and exhaust product. Since no external forces are considered, the linear momentum of the system must be conserved. If one then considers two instances of time t and t + dt, where dt is an innitesimal time period, one then has Mv = dm U + (M + dm)(v + dv) (1) where M is the mass of the rocket at time t, v is the velocity of the rocket at time t, dm is the change of mass of the rocket over the time dt, dv is the change of velocity of the rocket over the time dt, and U is the velocity of the exhaust product (relative to the inertial frame, not the rocket). In an attempt to simplify this, one can introduce the relative velocity between the rocket and the exhaust product. This relationship is seen as v rel = (v + dv) U. (2) If one then uses the relationship in equation (2) to replace U in equation (1) one gets Mv = dm (v + dv v rel ) + Mv + M dv + dm v + dm dv. (3) Which can be reduced to Furthermore, division with dt results in dm v rel = M dv. (4) dm dt v rel = M dv dt. (5) 3

Here dm dt is the rate of mass loss for the rocket. It can be denoted as R where R is a positive number. Obviously dv dt is the acceleration (a) of the rocket. One then has Rv rel = Ma. (6) So on the right side is the mass times the acceleration while on the left side is the rate of mass change times the velocity that the mass is being ejected with. The left side is called thrust. If one would want to know what is the maximum velocity one can achieve, it's simpler to go back to equation (4) and divide both sides with M and then integrate. It's clear then that one gets v 2 v 1 = v rel ln M 1 M 2. (7) Just from this equation the possible advantages of a multistage rocket becomes clear. For a rocket with n stages but with v rel unchanged for each stage, the equation becomes v n v 0 = v rel n i=1 ln M i,initial M i,final (8) where the dierence between M i,initial and M i,final is the fuel mass and the dierence between M i,final and M i+1,initial is the structural mass (i.e. container, engine, etc) of the ith stage. This is then only ecient when ln M 1,initial M n,final < n i=1 ln M i,initial M i,final. (9) For a single stage rocket, one can express the mass at any given time as M(t) = M initial Rt, the velocity for any given time, given that R is constant, can be expressed as ( ) Minitial v = v 0 + ln (10) M initial Rt 3 External forces In the previous section a system with no external forces was considered. While it can be interesting on its own, it can also be expanded upon to regard other situations. To do this one goes back to equation (1) which states that the dierence in momentum over a innitesimal time period is zero. The dierence in momentum will now be considered to be a non-zero amount. So equation (1) will then be dp = Mv dm U + (M + dm)(v + dv). (11) By using the relationship in equation (2) to replace U one has dp = dm v rel + M dv. (12) 4

Then by dividing with the innitesimal time dt one has Where dp dt dp dt = dm dt v rel + M dv dt is the total external force acting on the system. Then one has (13) F ext = Rv rel + Ma, (14) so Ma = Rv rel + F ext. (15) The velocity can be found by rewriting equation (13) with dp dt = F ext such that dm dt dv = v rel M dt + F ext dt. (16) M If one as before assumes that R is constant, and that the external forces over mass Fext M are also constant, then integration on both sides yields ( ) M0 v = v 0 + v rel ln + F ext M 0 Rt M t (17) where M 0 is the mass of the rocket at time t 0 3.1 Gravity One of the possible external forces that one may take into account when dealing with rocket motion is gravity. When doing this one may want to consider a simpler form than Newton's law of gravitation [4] F = G m 1m 2 r 2 (18) where F is the force, m 1 and m 2 are the masses for the two respective objects and r is the distance between the centre of mass of the two objects. For the case of motion in the vicinity of the Earth surface, denoting by R e the average Earth radius, one can rewrite equation (18) as m F = G (R e + h) 2 M (19) where m is the mass of the earth, R e is the radius of the earth, h is the hight of the object above the earth and M is the mass of the object. This can now be compared to the force of gravity at sea level [4] F = Mg (20) where g = G M R 9.84 m 2 s. So the question is can one use equation (20) when 2 accounting for gravity or does one need to consider the height of the rocket? A few sample heights were tested as seen in table 1. 5

Table 1: Table over dierence between equation (20) and (18) for dierent heights for a given mass height (km) Force(%) 1 0.03 30 0.94 120 3.66 354 10.26 What one can see from the table is how much g in equation (20) would change over a distance. It does not give a denite answer concerning if one can neglect the height or not, but it does give a rough overview of how drastic the changes would be. It all comes down to how exact the calculations need to be. What should be noted however is that the gravitational force decreases with height, meaning that if one calculates with a constant gravitational force, one will actually set a lower limit for how fast the rocket should go. In practice this may be a bad idea due to possible heating issue from going to fast while still in the Earth's atmosphere due to air resistance. Furthermore, the force will depend on the mass of the rocket. Since that will change too one needs to consider how grave the errors will be in combination with how one approximates the mass of the rocket. However, if one now decides to use equation (20), one will then have from equation (17) ( ) M0 v = v 0 + v rel ln gt. (21) M 0 Rt 3.2 Air resistance When one says air resistance one should specify what one actually means. In this case what's meant is drag, i.e. the resistance to moving in the direction of the velocity. The force from the drag on an object is known to be [5] F = 1 2 ρcav2 (22) where ρ is the density of the uid that the object is moving through, C is a coecient that is dependent on the geometry of the object, A is the frontal area (i.e. the area facing the direction of the velocity), and v is as dened earlier the velocity. Similar problems occur here as with gravity. That is, the density of the uid can vary with the distance travelled. For earth the air density can, after 12 km, have been reduced to 25% of its original value [6]. One can nd a prediction on how the density will change, but it will be dependent on, among other things, the height which itself it time-dependent. Then, when accounting for these factors, equation (16) has to be solved numerically. For lower ights perhaps one can assume that the air density is constant. Equation (16) then 6

has an analytical solution, i.e. ( 1 vrel 2 ρca R tanh v = ln M0 Rt M 0 1 2 ρca ) 1 arctanh( v0 2 ρca ) vrel R vrel R. (23) This was solved with the help of Maple as it comes from a non-linear dierential equation. For more accurate predictions where the density is taken to be nonconstant, then there is no guarantee that there will be an analytical solution. 4 Design examples Earlier in equation (9) there was a comparison between a single stage rocket and a multi-stage rocket where one can see from given variables what is the more eective design choice. To compare with other designs, equation (8) will be reformulated to look like n ( ) (n + 1 i)mf + (n + 1 i)m s + P L v = v 0 + v rel ln (24) (n i)m f + (n + 1 i)m s + P L i=1 so M i,initial = (n + 1 i)m f + (n + 1 i)m s + P L and M i,final = (n i)m f + (n + 1 i)m s + P L, where M f is the fuel mass for a single rocket stage, M s is the structural mass for a single rocket stage, and P L is the payload (i.e. the mass of what is wanted to reach the destination). An illustration can be seen in gure 1. Figure 1: Figure of a rocket design where the structural parts are stacked upon each other 7

Another way to arrange the same rocket parts as before would be to stack them parallel to each other as seen in gure 2. If one just engages one engine at the time and then discard it, one will have the same expression as (24). Figure 2: Figure of a rocket design where the structural parts are stacked next to each other If one engages all the engines at the same time one gets ( ) nmf + nm s + P L v = v 0 + ln. (25) nm s + P L However, it's easy to see that this one will at best be as eective as a single rocket piece without payload. But if one could have that to engage all engines while transferring fuel to the inner most rocket pieces and discarding rocket pieces that are empty. One then get the following equation v = v 0 + v rel n i=1 ( ) (n + 1 i)mf + (n + 1 i)m s + P L ln (n i)m f + (n + 1 i)m s + P L (26) which is the same as equation (24). So the designs are then equally ecient in terms of speed reached. But the parallel design will burn through the fuel quicker, thus reach the velocity earlier. Furthermore, these comparisons has only been made when there are no external forces, for example the design in gure 2 has clearly more air resistance. 5 Final words In this paper no direct conclusions have been reached. Though a way to predict a rocket velocity under some conditions has been presented. When discussing rockets, the velocity isn't the most important part necessarily, but rather how far it can travel. This is however something simple in theory to nd out in rst approximation, one simply integrates the equation of motion over the time interval that is travelled. 8

To get better predictions one will have to use numerical methods, e.g to properly account for air resistance. Furthermore, this paper has only dealt with the one dimensional case. In reality a rocket could travel in any three dimensions which needs to be accounted for. For a lot of comparisons of what would be the ideal rocket set-up when it comes to staging and forming, one would have to deal with numerical values and a series of relations in style with equation (9). Possible launch eects has not been investigated and could be of great interest. 9

References [1] Wikipedia - Newton's laws of motion. https://en.wikipedia.org/wiki/ Newton%27s_laws_of_motion. Accessed: 2016-01-26. [2] Martin JL Turner. Rocket and spacecraft propulsion: principles, practice and new developments. Springer Science & Business Media, 2008. [3] D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics. John Wiley & Sons, 2010. [4] C. Nordling and J. Österman. Physics Handbook for Science and Engineering, 8.6 edition. Studentlitteratur, Lund, 2006. [5] A Cengel Yunus and John M Cimbala. Fluid mechanics: fundamentals and applications. International Edition, McGraw Hill Publication, pages 185 201, 2006. [6] Mustafa Cavcar. The international standard atmosphere (isa). Anadolu University, 26470, 2000. 10