The Discovery Potential of Kaon Physics

Similar documents
The Discovery Potential of rare K and B decays. Andreas Weiler TU Munich

CP Violation Beyond the Standard Model

CP violation in quark flavor physics

Flavour Physics Beyond the Standard Model: (Minimal Flavour Violation)

CP Violation in B Physics Puzzles, Opportunities at LHCb,

Andreas Crivellin ITP Bern. Rare decays and MSSM phenomenology

Composite Higgs and Flavor

Theoretical Review on Lepton Universality and LFV

Search for Physics Beyond the Standard Model at B Factories

Flavor physics. Yuval Grossman. Cornell. Y. Grossman Flavor physics APS2009, Denver, 5/2/2009 p. 1

Flavour Opportunities at the Intensity Frontier

Kaon Decays in the Standard Model

SO(10) SUSY GUTs with family symmetries: the test of FCNCs

Bounds on New Physics from the Unitarity Triangle fit: Summer'06 update

arxiv: v3 [hep-ph] 28 Sep 2007

Extra-d geometry might also explain flavor

Unitary Triangle Analysis: Past, Present, Future

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

CP Violation: A New Era

Probing New Physics Through B s Mixing

Based on arxiv:0812:4320 In collaboration with A. Dedes, J Rosiek. Informal CIHEP Pizza Lunch February 6, 2009

Constraints on new physics from rare (semi-)leptonic B decays

Weak Decays, CKM, Anders Ryd Cornell University

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

arxiv:hep-ph/ v5 29 May 2006

Aspetti della fisica oltre il Modello Standard all LHC

Higgs Physics as an Indirect BSM Probe

S = 2 decay in Warped Extra Dimensions

Electroweak Theory: 5

B Physics: Theoretical Aspects Anirban Kundu

Searching for New Physics in Heavy Flavours

Discussion on (Heavy) Flavor Physics

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

Charged Lepton Flavor Violation: an EFT perspective

LHCb results relevant to SUSY and BSM physics

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Ricerca Indiretta di Supersimmetria nei Decadimenti dei Mesoni B

Recent results from rare decays

Recent CP violation measurements

Composite Higgs/ Extra Dimensions

Chaehyun Yu. in collaboration with P. Ko (KIAS) and Yuji Omura (Nagoya University) The 16 th LHC Physics Monthly Meeting, KIAS, Korea, Jun 01,

Technische Universität

Flavor Physics Part 2

Bs studies at a SuperB: physics case and experimental potentialities

arxiv:hep-ph/ v2 8 Sep 2003

Fundamental Symmetries - 2

Federico Mescia. Review of Flavour Physics. ECM & ICC, Universitat de Barcelona. FFP14, July 17 th 2014 Marseille. - Outline

Probing Beyond the Standard Model with Flavor Physics

Theory of CP Violation

theory perspective LEPP JC, 9 September 2011 Cornell University Flip Tanedo Flip s Beamer Theme 1/17 17

Theory overview on rare eta decays

Review of D-D Mixing

LHCb results and prospects

Charm CP Violation and the electric dipole moment of the neutron

Rare beauty and charm decays at LHCb

Probing beyond the Standard Model with B Decays

Standard Model updates and new physics analysis with the Unitarity Triangle fit

Why Super-B? Zoltan Ligeti. P5 Meeting, Feb , SLAC. Flavor as a probe of new physics. Sizable NP contributions possible. Some key processes

Theory of the ElectroWeak Interactions

B-meson anomalies & Higgs physics in flavored U(1) model

LHCb New B physics ideas

Rare charm decays. Journal of Physics: Conference Series. Related content OPEN ACCESS

Lecture III. Measurement of sin 2 in B K 0 S. Measurement of sin 2 in B + -, B + - Measurement of in B DK. Direct CP Violation

HADRONIC D MESON DECAYS. Cheng-Wei Chiang National Central University Academia Sinica National Center for Theoretical Sciences

Long distance weak annihilation contribution to

CP Violation: SM & Beyond

LATTICE QCD AND NEW PHYSICS: PRESENT & FUTURE

Flavour physics beyond the Standard Model

Updates from UTfit within and beyond the Standard Model

arxiv: v1 [hep-ph] 7 Sep 2009

12 Best Reasons to Like CP Violation

B Kl + l at Low Hadronic Recoil

Search for new physics in rare D meson decays

FLAVOUR IN WARPED EXTRA DIMENSIONS

CKMfitter A Mathematica based Version

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Quark flavour observables in the flavor precision era: 331 models vs other NP scenarios

Superb prospects: Physics at Belle II/SuperKEKB

CP VIOLATION. Thomas Mannel. Theoretical Physics I, Siegen University. Les nabis School 2011

La Fisica dei Sapori Pesanti

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

New Physics searches within Flavour Physics

LHCb Physics and prospects. Stefano Perazzini On behalf of LHCb Collabora4on MENU nd June 2010

arxiv: v1 [hep-ex] 10 Aug 2011

Flavour changing physics beyond the Standard Model

Where are we heading?

LISHEP The Composite Higgs. Andrea Wulzer. Zürich

MINIMAL FLAVOUR VIOLATION

Flavor Physics beyond the SM. FCNC Processes in the SM

Lepton flavour violation in RS models

Effective Field Theory and EDMs

Light KK modes in Custodially Symmetric Randall-Sundrum

Standard Model of Particle Physics

Hints of New Physics in b s transitions

The Higgs boson and the scale of new physics

Standard Model of Particle Physics SS 2013

Beyond Standard Model Effects in Flavour Physics: p.1

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011

Theories with Compact Extra Dimensions

Transcription:

The Discovery Potential of Kaon Physics Andreas Weiler TU Munich DIF06, Frascati

next 28 minutes Why are rare Kaon decays so promising? Four golden modes, status of the SM calculation New physics models and their predictions MFV and Susy, UEDs, warped ED, littlest Higgs... Conclusions

Perspective Lessons from the past: 60!MK rare low energy processes like!mk 87 ARGUS at Desy!MBd (charm), Bd - Bd osc. and EWPT (top), can tell us a lot about heavy particles 9x LEP prior to their discovery Present 99-now Belle/Babar SM works remarkably well (surprisingly also in the least understood sector, the flavor sector) Future In order to test NP indirectly we need theoretically very clean observables, preferably with small SM contribution.

The flavor problem L EF T = Λ 2 φ 2 + L(5) Λ + L(6) Λ 2 ": NP scale natural stabilization of the Higgs mass e.g. O (6) ( sd)2 Λ 2 " < 1 TeV K K mixing: " >10 3 TeV Two solutions: 1) " beyond LHC reach 2) " ~ 1 TeV but flavor-mixing somewhat protected

4 golden modes Br(K L π 0 µ + µ ) Br(K L π 0 e + e ) Br(K + π + ν ν) 24 carat Br(K L π 0 ν ν)

Potential of K->pivvK πν ν * Suppression of SM amplitude due to hierarchical CKM (s#d~$ 5, b#d~$ 3, b#s ~ $ 2 ) and power-like GIM * Long distance effects small and well under control K + s u ν t W Z ν V td d π + u + box ) A(K + π + ν ν) = B + (λ c Pc + λ t X(v) A(K L π 0 ν ν) = B L Im [λ t X(v)] * Dominated by short distance contributions o sigma(k + )theory ~ 4% o sigma(kl)theory ~ 2% λ t = V tsv td λ c = V csv cd K + π 0 e + ν B+ and BL from pure short-distance

General properties L (6) eff = 4G F 2 Q (6) ν = l=e,µ,τ α 2πs 2 W i=u,c,t C i (µ)q (6) ν ( s L γ µ d L )( ν ll γ µ ν ll ) C i (M W ) m 2 i V isv id Λ 2 QCD λ m 2 c(λ + iλ 5 ) m 2 t (λ 5 + iλ 5 ) u c t * Z penguin Amplitude ~ SU(2)L breaking => powerlike GIM mechanism * large CPV phase in dominant top contribution * charm effects: 1) negligible in KL: ~ mc 2 /mt 2 for dominant direct CPV- Amplitude 2) small in K + ~30% (# next to next slide)

SM prediction of KdL->pv K L π 0 ν ν [ Im (V B(K L π 0 ν ν) = κ ts V td ) L * short distance dominated (>99%) * very small theoretical error ~ 2% * 85% of total error CKM input * precise and direct measurement of amount of CPV in SM λ 5 κ L = r KL 3α 2 B(K + π 0 e + ν e ) 2π 2 s 4 W ] 2 X τ(k L ) τ(k + ) X = 1.46 ± 0.04 (NLO) Buchalla & Buras 93, 99; Misiak & Urban 99 r KL = 0.944 ± 0.028 isospin Marciano & Parsa 96 t B(K L π 0 ν ν) = (2.8 ± 0.6) 10 11 Brexp / BrSM <2.86 10 4 (90% C.L.) E391 KTEV, E391a (soon to be improved!)

SM prediction for K K->piv + π + ν ν [ (Im(V B(K + π + ν ν) = κ ts V td ) + λ 5 ) 2 ( Re(V X + ts V td ) λ 5 X + Re(V csv cd ) λ ) ] 2 (P c + δp c ) * theoretical error of QCD corrections to the charm contribution Pc factor ~4 smaller thanks to NNLO calculation * Pc error now dominated by!mc Buras, Gorbahn, Haisch, Nierste 05!"#!!"# g s d g c c % %!mc theory Pc NLO = 0.369±0.033±0.037±0.009! 0.37±0.07 Pc NNLO = 0.375±0.031±0.009±0.009! 0.38±0.04 &S Buchalla, Buras 94 Buras, Gorbahn, Haisch, Nierste 05

SM prediction for K K->piv + π + ν ν [ (Im(V B(K + π + ν ν) = κ ts V td ) + λ 5 ) 2 ( Re(V X + ts V td ) λ 5 X + Re(V csv cd ) λ ) ] 2 (P c + δp c ) * theoretical error of QCD corrections to the charm contribution Pc factor ~4 smaller thanks to NNLO calculation * Pc error now dominated by!mc Buras, Gorbahn, Haisch, Nierste 05 * LD and dim8 effects in 'Pc are ~ " 2 F" 2 /mc 2 ~10% of charm contribution, 6% enhancement of BrK + * LQCD could improve accuracy to 1-2% Isidori, Mescia & Smith 05 m c q 2 s d % % OP K " Λ QCD " " % % χpt Isidori, Martinelli & Turchetti 05 δp c = 0.04 ± 0.02

SM prediction for K K->piv + π + ν ν B(K + π + ν ν) = (8.0 ± 1.1) 10 11 * theoretical error of QCD corrections to the charm contribution Pc factor ~4 smaller thanks to NNLO calculation * Pc error now dominated by!mc Buras, Gorbahn, Haisch, Nierste 05 * LD and dim8 effects in 'Pc are ~ " 2 F" 2 /mc 2 ~10% of charm contribution, 6% enhancement of BrK + * LQCD could improve accuracy to 1-2% Isidori, Mescia & Smith 05 Isidori, Martinelli & Turchetti 05 Buras, Gorbahn, Haisch, Nierste 05 B exp + = ( 14.7 8.9 +13.0 ) 10 11 E787 (2), E949 (1)

Status of KL#" 0 l + l - Br(K L π 0 l + l ) = Buchalla, D Ambrosio, Isidori; Isidori, Smith, Unterdorfer 04 [ ( ) ( Cmix l + Cint l Imλt + Cdir l Imλt 10 4 10 4 ) 2 + C l CPC ] 10 12 indirect CPV interference of direct and indirect direct CPV CP conserving * substantial progress in theory error associated with light quark loops experimental input from NA48???? # 79@ # 9%&' # ;9" #?!? ) BBIF * G I. ) GIA * CH I ' ) BIA *. IB ).???? % 79@ % 9%&' % ;9" %?!? ) HIJ * CF I ) CK I *. IA ' ) C. I *.C I ) HIB * CF I Br(K L π 0 µ + µ ) = (1.5 ± 0.3) 10 11 Br(K L π 0 e + e ) = ( 3.7 +1.1 ) 0.9 10 11 Exp: @ 90% C.L. < 2.8 10 10 < 3.8 10 10 KTEV 00 KTEV 03

Status of KL#" 0 l + l - Br(K L π 0 l + l ) = Buchalla, D Ambrosio, Isidori; Isidori, Smith, Unterdorfer 04 [ ( ) ( Cmix l + Cint l Imλt + Cdir l Imλt 10 4 10 4 ) 2 + C l CPC ] 10 12 indirect CPV interference of direct and indirect Direct CPV amplitude: * clean probe of independent NP structures and CPV beyond SM * e.g. for enhanced EW penguins Br(KL#" 0 ( + ( - ): 4-5x bigger Buras, Fleischer, Recksiegel, Schwab 04 direct CPV NP *++! # T3"):*80+, +?)^$5)! (",140,- CP conserving "$ ^5!R Q ν, Q 9V, Q 10A " N " O

CKM and rare K decays f the so-called golden relation (sin 2β) ψks = (sin 2β) πν ν. test of the golden relation Could help improve the knowledge of CKM parameters However, more interesting is the 201x scenario: * CKM known to great precision independent of NP from Belle, BaBar, LHCb,... * SM prediction for K +, KL together with a 10% measurement allows precision test of the flavor structure of NP

New physics MFV MFV models general Flavor violation (Susy, warped ED)

Minimal Flavor Violation Buras, Gambino, Gorbahn, Jäger, Silvestrini (00) EFT approach: D Ambrosio, Giudice, Isidori, Strumia (02) In the limit of vanishing Yukawas SM acquires G=U(3) 5 SU(3)Q#SU(3)u#SU(3)d global symmetry. EFT approach Yukawa = Q L Y D D R H + Q L Y U U R (H) c Yukawas formally transform as YD ~ (3,1,3*) YU ~ (3,3*,1) MFV= effective field theory constructed with SM fields and Y s is invariant under G and CP 7 new parameters, aka independent Wilson coefficients, to describe all NP in B and K decays (more for large tan)) & all flavor changing processes governed by universal CKM

MFV parameters K 0 K 0 -mixing (ε K ) Bd,s 0 B d,s 0 -mixing ( M s,d) K πν ν, B X d,s ν ν K L µ µ, B d,s l l K L π 0 l + l ε, S = 1 Nonleptonic B = 1 B X s γ B X s gluon B X s l + l S(v) S(v) X(v) Y (v) Y (v), Z(v), E(v) X(v), Y (v), Z(v), E(v) X(v), Y (v), Z(v), E(v), E (v) D (v), E (v) E (v) Y (v), Z(v), E(v), D (v), E (v) dominant part Z-penguin trade for C7eff((b)

Bona, Buras, Bobeth, Ewerth, Pierini, Silvestrini, AW 05 Universal CKM fit from UTfit: Bona et. al 05

MFV upper bounds 7<=8 678 678 >"?@AB#@C8D?&#E% 345 92):; 92):; 9(/:;!/! >! " $! %%"# <: <<! +**,2 +*',2 /,-=*,0 <? @ <A D D : & BDC! "!/ > E " $ %% # <: : << +.,( +.,0 -,*=',( +),2!*'. BNL AGS E787, E949 <2.86 10 KTEV 4 (90% (90% C.L.) C.L.) E391 # $ <: ;!/! " F 2 %% # +),0 +.,* -,1=',0 +(.! &!/!! 5 " ' ' "# <: C +1,. +),2 -,1=*,' +),'!*' 0! &!/!! G " ' ' "# <: <: +0,0 +*,/ *,*=',. +*,(!*' - Any violation implies new sources of flavor and CP violation! Bona, Buras, Bobeth, Ewerth, Pierini, Silvestrini, AW (05)

Comparison of sensitivities D Ambrosio, Giudice, Isidori, Strumia 02; Buras,Bryman, Isidori, Littenberg 05 MFV : 1 Λ 2 ( Q L Y U Y Uγ µ Q L )( L L γ µ L L )

K + and KL in specific MFV models Littlest Higgs: slight suppression Universal ED: <9-10% enhancement MFV Supersymmetry: 0...40% suppression General pattern: NP contribution to!md interferes constructively with SM!F =2 Amplitude S in the above models and ( ) V NP 2 td Vtd SM = Buras, Uhlig, Poschenrieder 05 Buras, AW, Spranger 03 Buras, Gambino, Gorbahn, Jäger, Silvestrini 00 S SM S SM + S NP < 1 => talk by S. Fajfer on rare D decays Br(K)exp > Br(K)SM immediately falsifies most MFV models!

Beyond MFV MSSM with general flavor violation EW symmetry breaking in warped Extra Dimensions

Generic MSSM Nir & Worah 97 Buras, Romanino, Silvestrini 97 Colangelo & Isidori 98 Flavor structure probes Susy breaking mechanism Room for sizable deviations even if!f=2 sector agrees well with SM Sensitive to new sources of flavor symmetry breaking due to $ 5 suppression of SM amplitude s ũ L χ t R Z ũ L d weakly constrained Amplitude SU(2)L X (peng) SUSY small tanß 1 MZ 2 V Z sd (M 2 LR ) d t (M 2 LR ) s t M 4 SUSY For large tanß, RR Higgs-mediated Z-penguin A ~ mb 2 tanß 4 enhancement possible Paradisi & Isidori 05

Generic MSSM Buras, Ewerth, Jäger, Rosiek 04 includes all present constraints!mk, *K, b#s+,... saturation of Grossman-Nir bound KL could be 20-30x enhanced in reach of E391a! Figure 7: Distributions of X and Br(K L π 0 ν ν), Br(K + π + ν ν) for tan β = 2.

EWSB in the Randall- Sundrum model light fermions tr Planck brane Z Q L = ( tl b L ) SM brane Higgs 0 5 10 15 20 25 30 35 Fermion geography + deformed Z wavefunction: O(1) effects in rare K decays due to tree-level FCNCs Burdman 02; Agashe, Perez, Soni {including custodial SU(2)R and Zbb constraint} 04

Conclusions One of the most promising precision measurements to probe beyond SM particles with TeV mass and quark-flavor quantum numbers Rare Kaon decays are ideal test/killer of MFV Models with general flavor violation still allow for large deviations from SM See talk by talk by P. Paradisi for more NP opportunities in Kaon physics Discussions with A. J. Buras, U. Haisch, S. Jäger, and L. Silvestrini are gratefully acknowledged

Whatever nature has been hiding from us, Kaon physics has the potential to reveal it. Please measure!