r where the electric constant

Similar documents
r where the electric constant

Physics 112. Study Notes for Exam II

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

PHY102 Electricity Course Summary

Physics / Higher Physics 1A. Electricity and Magnetism Revision

AP Physics C. Magnetism - Term 4

Where k = 1. The electric field produced by a point charge is given by

AP Physics C. Electricity - Term 3

Physics 6B Summer 2007 Final

Physics Will Farmer. May 5, Physics 1120 Contents 2

8. (6) Consider the circuit here with resistors R A, R B and R C. Rank the

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A

AP Physics C Mechanics Objectives

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance

CHAPTER 29: ELECTROMAGNETIC INDUCTION

Circuits Capacitance of a parallel-plate capacitor : C = κ ε o A / d. (ρ = resistivity, L = length, A = cross-sectional area) Resistance : R = ρ L / A

Chapter 21 Magnetic Induction Lecture 12

b) (4) How large is the current through the 2.00 Ω resistor, and in which direction?

Physics for Scientists and Engineers 4th Edition 2017

Physics by Discovery Standards (2nd Semester)

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

LECTURE 17. Reminder Magnetic Flux

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

Last time. Ampere's Law Faraday s law

Lenz s Law (Section 22.5)

AP Physics Electromagnetic Wrap Up

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Induction_P1. 1. [1 mark]

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018

Calculus Relationships in AP Physics C: Electricity and Magnetism

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS. SEMESTER 2 July 2012

Electromagnetic Induction (Chapters 31-32)

Induction and Inductance

Outline of College Physics OpenStax Book

Q1. A wave travelling along a string is described by

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

Chapter 1: Electrostatics

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS

Demo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.

Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules

Faraday s Law; Inductance

Electrical polarization. Figure 19-5 [1]

Chapter 5: Electromagnetic Induction

Chapter 31. Faraday s Law

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

21 MAGNETIC FORCES AND MAGNETIC FIELDS

Sliding Conducting Bar

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Chapter 31. Faraday s Law

Chapter 1 The Electric Force

General Physics II. Electromagnetic Induction and Electromagnetic Waves

FARADAY S AND LENZ LAW B O O K P G

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

Faraday s Law of Electromagnetic Induction

FXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux :

Electromagnetic Induction. Bo Zhou Faculty of Science, Hokudai

III.Sources of Magnetic Fields - Ampere s Law - solenoids

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields.

Waves. Decibels. Chapter 21: Dimension

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Physics 2020 Exam 2 Constants and Formulae

FIRST TERM EXAMINATION (07 SEPT 2015) Paper - PHYSICS Class XII (SET B) Time: 3hrs. MM: 70

Chapter 24. Magnetic Fields

Exam 2 Solutions. ε 3. ε 1. Problem 1

Practice Exam 1. Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge:

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is:

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

Chapter 28. Direct Current Circuits

PHYS 202 Notes, Week 6

General Physics (PHY 2140)

Electricity & Magnetism

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII

Handout 10: Inductance. Self-Inductance and inductors

PHYS 241 EXAM #2 November 9, 2006

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

Unit 8: Electromagnetism

Describe the forces and torques exerted on an electric dipole in a field.

Version 001 CIRCUITS holland (1290) 1

Physics 208, Spring 2016 Exam #3

AQA Physics A-level Section 7: Fields and Their Consequences

Q1. Ans: (1.725) =5.0 = Q2.

Phys102 Final-163 Zero Version Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1. = m/s

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

Magnetism. and its applications

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

AP Physics C. Electricity and Magne4sm Review

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1

Revision Compare Between. Application

Chapter 21 Electric Current and Direct- Current Circuits

CHAPTER 7 ELECTRODYNAMICS

C. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them.

Final Exam Concept Map

Chapter 21 Lecture Notes

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Transcription:

0. Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, grounding and charge conservation. b) Describe the motion of point charges when placed near another charged object. c) Relate the motion of charges to a force and state Coulomb s Law. d) Explain, qualitatively, how the direction and the strength of this force changes with magnitude of the charges and the distance between the charges. e) Draw a force diagram to a system of point charges and obtain the direction and magnitude of the resultant force acting on a point charge due to the presence of other point charges. Relate the motion to Newton s nd law of motion and to the concept of motion. r qq F = k r where the electric constant 9 N k = = 9.0 0 4 πε C m 0 point charges along the x-axes, along the y-axes and 3 charges that forms a rightangled triangle. Physics untuk Teknikal BMKPM Page 5 of 9

0. Electric field a) State qualitative meaning of an electric field b) Write the electric field strength produced by a point charge and explain qualitatively how the field strength and direction changes when measured at different places. c) Sketch the electric field lines produced by an isolated point charge, by two positive or two negative point charges, by a pair of positivenegative charge and for a point charge placed between a uniformlycharged parallel plates. d) Obtain numerically and show pictorially the electric field strength and direction for a point charge, for a system of two charges and for a system of three charges. e) Explain the effect of the electric field on a positive test charge placed at midpoint between a pair of positive or negative charges and a pair of positive-negative charge. r q E = k r. Note also the direction. Indicate the change of strength (field intensity) by varying the length of the field lines. Draw the field lines for a system of positive charges, negative charges and a pair of positive- negative charge. Numerically determine the field intensity on the right, on the left and at midpoints along the line of a pair of positive charges and a pair of positive-negative charge. r r q0q F = q0e = k. r Physics untuk Teknikal BMKPM Page 6 of 9

0.3 Electric Potential & Equipotential Surfaces a) Define electric potential and an equipotential surface. b) Sketch equipotential lines for an isolated positive charge, for an isolated negative charge, for a pair of positive-positive charge, for a pair of positive-negative charge and for a parallel-plate capacitor c) Write the strength and numerically obtain the potential for an isolated charge. d) Write the strength and numerically obtain the potential to the right, to the left and at midpoints for a pair of positive-positive charge and for a pair of positive-negative charge. e) Write, explain and numerically obtain the field strength in the area between a uniformly-charged parallel-plate capacitors. f) Explain, qualitatively, the electric potential energy gain or lost when a positive point charge is moved in an electric field. Electric potential as the amount of work done in moving a point charge from far away (infinity) to some point A in an electric field (compare to moving a mass in a gravitational field). WBA V VA = V A = q0. Equipotential surface as a surface where V is a constant. For a point charge, q0e q V = r = k r = q r V E = d 0 q k r Explain the work energy relation W = U U = q V AB B A 0 Physics untuk Teknikal BMKPM Page 7 of 9

.0 CAPACITOR AND DIELECTRICS At the end of this topic, the student should be able to: 3. Capacitance and energy of capacitors a) Define capacitance and state the purpose of a capacitor. b) Explain, qualitatively and algebraically, the factors affecting the capacitance of a parallel plate capacitor and the changes in the capacitance when the geometrical dimensions are changed. c) Numerically determine the capacitance of parallel plate capacitors and the changes in the capacitance when the geometrical dimensions are changed. d) Qualitatively, algebraically and numerically explain and obtain the changes in energy stored by a parallel-plate capacitor when the charging source and/or the geometrical dimensions are changed. Capacitance as a measure the charge on the capacitor per unit Q voltage, C = V Air-filled capacitor ε 0 A C0 =, C = ε r C o d Table of dielectric constant Other types of capacitors are not discussed. Q U = CV = QV = C. Capacitors in series and parallel combination a) Draw a schematic diagram for capacitors connected in series and capacitors connected in parallel. b) Obtain the mathematical formulation for effective capacitances for capacitors connected in series and connected in parallel. c) Calculate the effective capacitances of capacitors in series, capacitors in parallel and capacitors in series-parallel combination. d) Determine the voltage, the charge stored and the energy stored on each capacitor in a series, in parallel and in connected in series-parallel combination. Limit to five capacitors. Use the constant potential difference for a parallel circuit and constant current in series circuit to obtain effective capacitance. Parallel: C = C + C +.. + C5 Series: = + +... + C C C C 5 Physics untuk Teknikal BMKPM Page 8 of 9

.0 ELECTRIC CURRENT AND DIRECT-CURRENT CIRCUITS At the end of this topic, the student should be able to: 8. Ohm s law and Resistivity a) Define electric current. b) Explain the relationship between current flow, electric field and potential difference between two points in a circuit. c) Define electromotive force (emf) of a battery and explain its role to current flow in a circuit. d) Draw an equivalent circuit to represent a battery with emf ε and internal resistance r and explain its effect to the current flowing in circuit. e) State and mathematically write Ohm s law. f) State the explain the relationship between the resistance of a wire the to its physical dimensions and to its resistivity. g) Explain the concept of potential drop across a resistor in a simple circuit. h) Explain, qualitatively, the effect of temperature on electrical resistances of conductors. ΔQ I =, Δt V=IR dq I = dt R = ρl A Introduce conductivity as the inverse of resistivity σ = ρ Simple circuit is limited to only one load (bulb or resistor) V =ε - Ir.. Electrical energy and power a) Define electrical power and explain joule heating in a resistor. b) Determine the dissipative power and energy loss in a simple circuit. Include P = I R and V P = R for power. Emphasize on V as potential difference across resistors. P = VI and Energy VIt Physics untuk Teknikal BMKPM Page 9 of 9

.3 Resistors in series and parallel a) Draw a circuit diagram for resistors in series and resistors in parallel. b) Obtain the mathematical formulation for effective resistances for resistors connected in series and resistors connected in parallel. c) Calculate the effective resistance of resistors in series, resistors in parallel and resistors in series-parallel combination. d) Determine the voltage and the current on each resistor connected in series, connected in parallel and connected in a series-parallel combination..4 Kirchhoff s Laws a) State Kirchoff s current and voltage laws and write the mathematical representation for both laws. b) Label the high and low potential points across resistors and batteries for a given current direction in a loop. c) Write Kirchhoff s laws applied to a two-loop circuit. Limit to four resistors. Use Ohm s Law. Use the constant potential difference for a parallel circuit and constant current in series circuit to obtain the effective resistance. Limit to a maximum of only 3 resistors in series and 3 resistors in parallel for the combination circuit. Σ V = ΣV, Σ I in = ΣI out drop rise Limit to a maximum of only 3 resistors and batteries in each loop. Specify the current before labelling the high and low potential ends. Maximum of two closed circuit loops. 3.0 MAGNETIC FIELD At the end of this topic, the student should be able to: 6 Physics untuk Teknikal BMKPM Page 0 of 9

3. Permanent magnets and magnetic force a) Sketch the magnetic field lines produced by permanent magnets. Bar magnet and horse-shoe magnets b) Describe the relationship between a magnet s poles and the field lines produced. c) Describe the effect of magnetic field on static and moving electric charges. d) Write the strength and determine the direction of magnetic force acting on moving charges by using the First Right Hand Rule. e) Use the First Right Hand Rule to obtain direction of motion, direction of magnetic field or the magnetic force whenever any two of the quantities are known. Use tiny compasses to represent B field lines and to show direction of the field. Briefly describe the Earth as a giant magnet. Briefly mention the common units used for field strength and some typical values of B. Only moving charges with velocity perpendicular to or having the velocity component which is perpendicular to the field will experience a magnetic force. F = qvbsinθ vb. NO NEED to introduce cross product. Use either the first right hand rule (thumb along velocity, other fingers along B then the palm will show force acting on a +ve charge) or any other easy-to remember rules to determine direction of the force. Physics untuk Teknikal BMKPM Page of 9

3. Magnetic field produced by current-carrying conductor a) Determine the direction of magnetic field produced by current-carrying conductor. b) Sketch the field lines produced by a long current-carrying conductor and by a circular wire. Use the nd Right Hand Rule (corkscrew) to determine direction of B r for both the long wire and circular wire. c) Write and numerically determine the strength (intensity) of the field produced by a long wire as a function of the current carried by the wire and distance from the wire. μ0i B = for a long straight πr wire d) Write and numerically determine the strength (intensity) of the field produced at the centre of a circular wire. e) Draw the magnetic field lines and label the North-South poles for a solenoid. μ I B = 0 at the centre of a r circular wire of radius R. f) Write and numerically determine the strength (intensity) of the field produced along the centre of a solenoid. B = μ 0nI for a solenoid with N turns per meter of the wire. Physics untuk Teknikal BMKPM Page of 9

3.3 Magnetic Force on a moving charged particle and on a current-carrying conductor. a) Determine the magnitude and direction of force acting on a charged particle moving near a current-carrying conductor. b) Determine the magnitude and direction of the force acting between two parallel current-carrying conductors and between two wires carrying current in opposite directions. c) Determine the direction of the force acting between two parallel circular wires carrying current in the same directions and two parallel circular wires carrying current in the opposite directions. d) Compute the force per unit length on two adjacent parallel current-carrying conductors Use the st Right Hand Rule. F = qvbsinθ Force between two parallel wires: F = qvbsin θ vb = ILBsinθ IB. You need to first determine the B field produced by each wire (using the corkscrew rule) before applying the st Right Hand Rule. Determine the poles for the circular wires before determining the direction of forces between two parallel coils. Assume wires of same lengths L, F μ 0I then = I B = I L πd vb 3.4 Torque on a coil a) Determine the force directions on the sides of a rectangular coil with surface area A and carrying current I placed in a magnetic field B. b) Describe the effect of the magnetic force on the coil, qualitatively and pictorially. c) List and explain the factors affecting speed of rotation for a rectangular coil of surface area A, carrying current I placed in a magnetic field B. Use results from section 3.3 Show the force directions and the direction of rotation for both sides and how that changes when current direction or field direction is reversed. Area, field strength, number of turns and the current Physics untuk Teknikal BMKPM Page 3 of 9

4.0 ELECTROMAGNETIC INDUCTION At the end of this topic, the student should be able to: 4 4. Magnetic Flux and Faraday s Law a) Define magnetic flux and explain the factors that will change magnetic flux, b) Qualitatively and diagrammatically describe what happens in a conducting wire coil when a bar magnet is moved towards or away from the coil. c) State Faraday s law and mathematically write the law. d) Use Faraday s law to qualitatively explain the maximum induced current and hence the emf in a conducting wire coil connected in series with a resistor. e) Qualitatively explain the relationship between induced voltage (emf) and the induced current. f) Calculate the induced emf in a single coil and in coils with N turns for changes in B field strength and for changes in the area of the coil. Flux governed by product of the magnetic field (its perpendicular component) strength passing through the surface of a coil and the area of the coil.. Φ = BA cosθ. Limit to field lines that are perpendicular to surface. Emphasize on the magnet s polarity and its direction of motion as the determining factor in describing the direction of induced current. ΔΦ emf = N (induced Δt voltage) Example of changes in B only and changes in A only. 3 g) Determine the imaginary poles for the induced magnetic field for magnets moving into and away from a conducting wire coil. Use the imaginary poles for the induced B field to decide direction of induced I and the high and low potential ends of the resistor. Physics untuk Teknikal BMKPM Page 4 of 9

4. Lenz s Law h) State Lenz s law and explain how the law is used to explain part (g), the direction of induced current and hence the induced emf. ΔΦ Δ(cosΘ) emf = N = NAB Δt Δt i) Apply Lenz s Law to determine the direction of the induced current and the induced emf in a coil being rotated between poles of a permanent magnet and to explain the sinusoidal behaviour of the induced emf and induced current. j) Apply Faraday s Law to obtain the magnitude of the induced emf for a coil rotating between the poles of a permanent magnet and use Ohm s Law to determine the induced current in the coil. 5.0 WAVES At the end of this topic, students should be able to: 5 5. Mechanical and electromagnetic waves a) Define the concept of waves and wave propagation. b) List and describe the characteristics of transverse and longitudinal waves. Examples : water waves, sound waves, seismic waves and waves in a string c) Compare and contrast between mechanical and electromagnetic waves. d) List and describe the properties of waves. Physics untuk Teknikal BMKPM Page 5 of 9