Every object remains in a state of rest or move with constant velocity in a straight line unless forces acts on it to change that state

Similar documents
Name: M1 - Dynamics. Date: Time: Total marks available: Total marks achieved:

Created by T. Madas WORK & ENERGY. Created by T. Madas

M1 January Immediately after the collision Q moves with speed 5 m s 1. Calculate. the speed of P immediately after the collision,

Core Mathematics M1. Dynamics (Planes)

Page 2. Example Example Example Jerk in a String Example Questions B... 39

A.M. MONDAY, 25 January hours

Solutionbank M1 Edexcel AS and A Level Modular Mathematics

Paper Reference R. Mechanics M1 Advanced/Advanced Subsidiary. Friday 6 June 2014 Afternoon Time: 1 hour 30 minutes

Paper Reference. Mechanics M1 Advanced/Advanced Subsidiary. Wednesday 3 June 2015 Morning Time: 1 hour 30 minutes

Topic 4 Forces. 1. Jan 92 / M1 - Qu 8:

Mechanics M1 Advanced/Advanced Subsidiary

Unit 2: Vector Dynamics

MEI Mechanics 1. Applying Newton s second law along a line

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Student AP Physics 1 Date. Newton s Laws B FR

M1 January An easy question to start the paper. Applying conservation of momentum where u is the initial velocity and v the final velocity.

HATZIC SECONDARY SCHOOL

PHYS 101 Previous Exam Problems. Force & Motion I

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Review: Advanced Applications of Newton's Laws

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

Mechanics M1 Advanced/Advanced Subsidiary

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

NEWTON S LAWS OF MOTION

MOMENTUM, IMPULSE & MOMENTS

Physics B Newton s Laws AP Review Packet

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

Mechanics M1 Advanced Subsidiary

= 40 N. Q = 60 O m s,k

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Inclined Planes Worksheet Answers

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

NEWTON S LAWS OF MOTION

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

AP Q1 Practice Questions Kinematics, Forces and Circular Motion

Reading Quiz. Chapter 5. Physics 111, Concordia College

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced?

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

Find the magnitude of F when t = 2. (9 marks)

Advanced/Advanced Subsidiary

Motion in a straight line

Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter.

Question 01. A. Incorrect! This is not Newton s second law.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

PhysicsAndMathsTutor.com

Unit 5 Forces I- Newtonʼ s First & Second Law

Mathematics (JAN11MM1B01) General Certificate of Education Advanced Subsidiary Examination January Unit Mechanics 1B TOTAL

A force is a push or a pull.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PhysicsAndMathsTutor.com

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics)

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Paper Reference. Mechanics M1 Advanced/Advanced Subsidiary. Friday 15 January 2010 Afternoon Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

PRACTICE TEST for Midterm Exam

Chapter 4. Forces and Newton s Laws of Motion. continued

Thomas Whitham Sixth Form Mechanics in Mathematics

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Time: 1 hour 30 minutes

Mathematics AS/P2/M18 AS PAPER 2

Physics-MC Page 1 of 29 Inertia, Force and Motion 1.

d. Determine the power output of the boy required to sustain this velocity.

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

Page 2. Example Example Example Jerk in a String Example Questions B... 39

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra

Webreview practice test. Forces (again)

PHYS 101 Previous Exam Problems. Kinetic Energy and

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics

CHAPTER 4 TEST REVIEW -- Answer Key

Name: Date: Period: AP Physics C Work HO11

Old Exam. Question Chapter 7 072

Paper Reference. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary


B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6.

PhysicsAndMathsTutor.com

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Motion Graphs Practice

* * MATHEMATICS (MEI) 4761 Mechanics 1 ADVANCED SUBSIDIARY GCE. Wednesday 21 January 2009 Afternoon. Duration: 1 hour 30 minutes.

Edexcel GCE. Mechanics M1 Advanced Subsidiary. Specimen Paper Time: 1 hour 30 minutes

physicsandmathstutor.com Paper Reference Mechanics M1 Advanced/Advanced Subsidiary Friday 11 January 2008 Morning Time: 1 hour 30 minutes

TOPIC B: MOMENTUM EXAMPLES SPRING 2019

Paper Reference. Advanced/Advanced Subsidiary. Thursday 7 June 2007 Morning Time: 1 hour 30 minutes. Mathematical Formulae (Green)

6677 Edexcel GCE Mechanics M1 (New Syllabus) Advanced/Advanced Subsidiary Friday 12 January 2001 Afternoon Time: 1 hour 30 minutes

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Physics 101 Lecture 5 Newton`s Laws

Mathematics Assessment Unit M1

AP Physics 1 Multiple Choice Questions - Chapter 4

Physics I (Navitas) EXAM #2 Spring 2015

The box is pushed by a force of magnitude 100 N which acts at an angle of 30 with the floor, as shown in the diagram above.

Transcription:

" NEWONʼS LAW OF MOION NEWONʼS FIRS LAW Newtonʼs First Law of Motion states that: Every object remains in a state of rest or move with constant velocity in a straight line unless forces acts on it to change that state Only when these external forces have a non-zero resultant with the body change from its previous state of rest or of constant velocity. (i) A body at rest If forces act on a body and it does not move, the forces must balance. Hence, if a number of forces act on a body and it remains at rest, the resultant force in any direction must be zero. Example 1 A body is at rest when subjected to the forces shown in the diagram. Find and Y. 50 N 50 N 10 N Y 10 N (ii) A body in motion A body can only change its velocity, i.e. increases its speed, slow down or change direction, if a resultant force acts upon it. hus, if a body is moving with constant velocity, there can be no resultant force acting on it. Example 2 A body moves horizontally at a constant and S. 5 ms 1 subject to the forces subject to the forces shown. Find P 5 ms 1 300 N P S S 2000 N 1

" NEWONʼS LAW OF MOION Example 3 A car of mass 800 kg is traveling at a constant velocity of motion is 1500 N. aking g = 10 ms 2, determine: 30 ms 1 along a level road. he resistance to (a) the force produced by the engine (b) the normal reaction acting on the car Example 4 A trunk is pulled across a horizontal floor by a force of 50N inclined at 30 above the horizontal. he trunk has a mass of 40 kg and travels with a constant velocity. Determine the exact values of: (a) the resistance to motion (b) the normal reaction 2

" NEWONʼS LAW OF MOION NEWONʼS SECOND LAW Newtonʼs Second Law of Motion states that: When a force of F Newtons acts on an object of mass m kg, it produces an acceleration,, given by F = ma a ms 2 When a resultant force acts on a body, it causes acceleration. he acceleration is proportional to the force. he same force will not produce the same acceleration in all bodies. he acceleration produced by a force depends upon the mass of the body on which it acts. he unit of mass is the kilogram (kg). A force of 1N produces an acceleration of 1 ms 2 in a body of mass 1kg. In general terms, a force F newtons on a body of mass m kg produces an acceleration of a ms 2, where: F = ma his is a vector equation, so the acceleration produced is in the direction of the applied force, or of the resultant force if there is more than one force acting. Newtonʼs Second Law can be summarized by the equation F = ma, which is often referred to as the equation of motion. Example 1 A body of mass 8kg is acted upon by a force of 10N. Find the acceleration. Example 2 A body of mass 2kg, subject to forces as shown in the diagram, accelerates uniformly in the direction indicated. Find the acceleration and the value of P. P 4 N 10 N 20 N a ms 2 3

" NEWONʼS LAW OF MOION Example 3 In each of the following situations of the forces acting on the body causes it to accelerate as indicated. Find the magnitude of the unknown forces and Y. 3 ms 2 (a)" " " " " (b)" " " " " (c) 2 2 ms 2 ms 2 mass 10kg mass 10kg 10 N mass 10kg Y 100 N 100 N 50 N (d)" " " 2 ms 2 " " (e)" " " 2 ms" 2 " (f) 57 N 20 N 10 N mass 5kg Y 30 N mass 5kg 10 ms 2 mass 10kg Y 50 N 50 N 157 N 4

" NEWONʼS LAW OF MOION GRAVIY AND WEIGH A body falling under gravity experiences an acceleration g = 10ms 2. From Newtonʼs Laws it is clear that this acceleration must be caused by a force acting on the body. his force is called the weight of the body. w = mg w - weight force m - mass of the object g - acceleration due to gravity Example 1 Find:" (a) the weight in Newtons of a box of mass 5kg " (b) the mass of a stone of weight 294N Example 2 A box of mass 5kg is lowered vertically by a rope. Find the force in the rope when the box is lowered with an acceleration of 4 ms 2 Example 3 A pack of bricks of mass 100kg is hoisted up the side of a house. Find the force in the lifting rope when the 1 bricks are lifted with an acceleration of 4 ms 2 5

" NEWONʼS LAW OF MOION Example 4 In each of the following situations, the forces acting on the body cause it to accelerate as indicated. In (a), (b) and (c), find the magnitude of the unknown forces and Y. (a)" " " " " (b)" " " " " (c) 5 ms 2 4 ms 2 4 ms 2 mass 10kg mass 10kg 10 N mass 10kg Y 10g N 10g N 5g N In (d), (e) and (f), find the mass m. (d)" " " 20 N " " (e)"" " 180 " N " (f) 7 N 20 N 6 ms 2 mass m 2 ms 2 1 ms 2 mass m mass m Y mg N mg N mg N In (g), (h) and (i), find the magnitude of the acceleration a. (g)" " 50 " N " " (h)" " 90 " N " " (i) 16 N 4 N a ms 2 mass 10kg a ms 2 a ms 2 mass 9kg mass 4kg 10g N 9g N 4g N 6

" NEWONʼS LAW OF MOION F = ma and INCLINED FORCES Examples: a ms 2 1.(a)" " " " " 100 " N " " (b) a ms 2 5 N 5 kg 30 10 kg 10 2.(a)" " " " " " " " (b) 2 ms 2 7 ms 2 P P 30 15 kg 100 N 30 N 20 10 kg 3.(a)" " " 6.5 ms" 2 " " " " (b) 2 2 ms 2 18 N 300 N m kg 35 45 50 2N m kg 7

" NEWONʼS LAW OF MOION 4. A particle of mass 5kg is pulled up a smooth slope inclined at 30 to the horizontal. he applied force has a value of 50N and acts parallel to the slope. Calculate the acceleration of the particle. 5. An object of mass 20kg slides down a slope inclined at 45 to the horizontal. he resistance to motion is 60N and acts parallel to the slope. aking g = 10ms 2, determine the value of the acceleration of the object in surd form. 6. A particle of mass 100g is projected up a smooth inclined plane with an initial speed of 19.6 ms 1. he slope is inclined at 20 to the horizontal. Find: " (a) the deceleration of the particle " (b) the distance traveled up the slope before the particle comes to rest 7. A body has a mass of 30kg and is accelerated up a slope inclined at 30 to the horizontal. he acceleration of the body is 3 ms 2 and the frictional resistance is 300N. Calculate the force parallel to the slope causing this acceleration. 8

" NEWONʼS LAW OF MOION NEWONʼS HIRD LAW Newtonʼs hird Law of Motion states that: o every action there is an equal and opposite reaction Example 1 A man of mass 90kg is standing in a lift of mass 300kg which is acceleration upwards at 0.6 ms 2. Find the tension in the lift cable and the reaction between the man and the floor of the lift. Example 2 An engine of mass 10 tonnes is pulling a track of mass 3 tonnes. he resistance of forces acting on the engine and the truck are 4000N and 1500N respectively. he driving force of the engine is 14000N. Find the acceleration of the system and the tension in the coupling between the engine and the truck. 14 000 N 1500 N 4000 N 9

" NEWONʼS LAW OF MOION CONNECED PARICLES In the following examples the strings are all considered to be light and inextensible. Note also that, when a surface is said to be smooth, it is to be assumed that the surface offers no resistance to the motion of a body across it. Example 1 Consider a body of mass 3kg at rest on a smooth horizontal table. his body is connected by a light string, which passes over a smooth pulley at the edge of the table, to another body of mass 2kg hanging freely. As the pulley is smooth, the tension in the string on both sides of the pulley will be the same. Find the acceleration of the two bodies and the tension in the string. he string is said to be light, so its weight can be ignored. As the string is inextensible, when the system is released from rest the two bodies will have equal acceleration along the line of the string. 3 kg 2 kg 10

" NEWONʼS LAW OF MOION Example 2 Particle of mass 4kg and 2kg are connected by a light string passing over a smooth fixed pulley. he particles hang freely and are released from rest. Find acceleration of the two particles and the tension in the string. a a 4 kg 2 kg 4g N 2g N Example 3 2 A 1 2 1 2 kg 10 kg A body A rests on a smooth horizontal table. wo bodies of mass 2kg and 10kg, hanging freely, are attached to A by string which pass over smooth pulley at the edges of the table. he two string are taut. When the system is released from rest, it accelerates 2 ms 2. Find the mass of A. 11

" NEWONʼS LAW OF MOION Example 4 wo particles of mass 2kg and 3kg are connected by a light inextensible string passing over a fixed smooth pulley. Initially the system is at rest with the strings taut and vertical with both particles at a height of 2m above the ground. When the system is released, find the time which elapses before the 3kg mass hits the ground and the maximum height reached by the 2kg mass. a a 2m 2g N 3g N initial position o find the maximum height reached by the 2kg mass, we have to find the speed at which both particles are traveling when the 3kg hits the ground. Once the 3kg mass hits the ground, the string is no longer taut, the 2kg mass now moves freely upwards (against gravity) until it reaches its maximum height before going down again and make the string taut again.? m 4 m 4 m position when 3 kg mass hits the ground position when 2kg mass going down making the string taut again 12

" NEWONʼS LAW OF MOION SIUAION INVOLVING FRICION Examples 1. A block of mass 5kg moves on a rough horizontal plane with coefficient of friction 0.2 under the action of a horizontal force of 30N. If the block starts from rest, find the distance it travels in the first 3 seconds of motion. 2. A particle of mass 6kg, moving at 8 ms 1 on a smooth horizontal surface, goes onto a rough horizontal surface with a coefficient of friction 0.25. Find the distance it moves across the rough surface before coming to rest. 3. he diagram shows a small block of mass 2kg able to move on a rough plane of a length of 8m inclined at " 20 to the horizontal. he block is attached by means of a light string passing over a smooth pulley at " the top of the plane to a particle of mass 5kg hanging freely. he coefficient of friction between the block " and the plane is 0.2. he system is released from rest with the block at the bottom of the plane. Find the " time which elapses before it reaches the top. 8 m a R a F 20 2g N 5g N 4. A particle, moving at 6 ms 1 on a smooth horizontal surface, goes onto a rough horizontal surface and is brought to rest in a distance of 20m. Find the coefficient of friction involved. 5. A block of mass 6kg moves on a rough horizontal surface ( µ =0.25 ) under the action of a horizontal force. It accelerates from rest to a speed of 4 ms 1 in a distance of 12 m, continues for a time at this speed and then decelerates to rest in a distance of 2 m. Find the magnitude and direction of the horizontal force required during each stage of the journey. 13