Spectral Analysis of Noise in Switching LC-Oscillators

Similar documents
On the Phase Noise and Noise Factor in Circuits and Systems - New Thoughts on an Old Subject

Linear Phase-Noise Model

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Introduction to CMOS RF Integrated Circuits Design

Electronic Circuits Summary

Circuit Topologies & Analysis Techniques in HF ICs

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

Systematic Design of Operational Amplifiers

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL

Amplifiers, Source followers & Cascodes

Switching circuits: basics and switching speed

Transistor Noise Lecture 10 High Speed Devices

EECS 105: FALL 06 FINAL

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA

ECE315 / ECE515 Lecture 11 Date:

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Reciprocal Mixing: The trouble with oscillators

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

ECE 546 Lecture 11 MOS Amplifiers

Advanced Current Mirrors and Opamps

Voltage-Controlled Oscillator (VCO)

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

AC Circuits Homework Set

Chapter 13 Small-Signal Modeling and Linear Amplification

Circle the one best answer for each question. Five points per question.

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

Homework Assignment 08

PY3107 Experimental Physics II

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Two-Port Noise Analysis

MOSFET and CMOS Gate. Copy Right by Wentai Liu

Characteristics of Passive IC Devices

Sample-and-Holds David Johns and Ken Martin University of Toronto

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

Integrated Circuit Operational Amplifiers

Structured Electronic Design. Building the nullor: Distortion

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Voltage AmpliÞer Frequency Response

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

ECE 497 JS Lecture - 12 Device Technologies

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

EE247 Lecture 16. Serial Charge Redistribution DAC

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

Transistor Noise Lecture 14, High Speed Devices

Analysis of MOS Cross-Coupled LC-Tank Oscillators using Short-Channel Device Equations

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

ELEN 610 Data Converters

IFB270 Advanced Electronic Circuits

Dynamic operation 20

ECEN 610 Mixed-Signal Interfaces

Analysis and Design of Differential LNAs with On-Chip Transformers in 65-nm CMOS Technology

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

The Devices. Jan M. Rabaey

Microelectronics Main CMOS design rules & basic circuits

EKV Modelling of MOS Varactors and LC Tank Oscillator Design

(3), where V is the peak value of the tank voltage in the LC circuit. 2 The inductor energy is: E.l= LI 2

THE INVERTER. Inverter

55:041 Electronic Circuits The University of Iowa Fall Exam 2

Modeling of Devices for Power Amplifier Applications

Lecture 4, Noise. Noise and distortion

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Lecture 37: Frequency response. Context

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

CMOS Analog Circuits

ESE319 Introduction to Microelectronics. Feedback Basics

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Chapter 9 Frequency Response. PART C: High Frequency Response

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

Physics for Scientists & Engineers 2

INDIAN SPACE RESEARCH ORGANISATION. Recruitment Entrance Test for Scientist/Engineer SC 2017

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters

ECE 255, Frequency Response

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E.

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

13. Bipolar transistors

Q. 1 Q. 25 carry one mark each.

A 74.9 db SNDR 1 MHz Bandwidth 0.9 mw Delta-Sigma Time-to-Digital Converter Using Charge Pump and SAR ADC

Electronics. Basics & Applications. group talk Daniel Biesinger

The K-Input Floating-Gate MOS (FGMOS) Transistor

Bipolar Junction Transistor (BJT) - Introduction

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Driven RLC Circuits Challenge Problem Solutions

Feedback Transimpedance & Current Amplifiers

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Characteristic of Capacitors

Biasing the CE Amplifier

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

IXBK55N300 IXBX55N300

S.E. Sem. III [ETRX] Electronic Circuits and Design I

Transcription:

Spectral Analysis of Noise in Switching LC-Oscillators 71

Sub-Outline Duty Cycle of g m -cell Small-Signal Gain Oscillation Condition LC-Tank Noise g m -cell Noise Tail-Current Source Noise (Phase) Noise Factor Bipolar VCO (Phase) Noise Factor CMOS VCO Bipolar vs. CMOS VCO 7

Is it Indeed so Simple? i GTK C V L C V LC-tank noise i C1 v B1 v B Q 1 Q i B1 i B i C transconductor noise Q CS i TCS tail-current source noise noise from the transistors Q 1 and Q is switched ON and OFF noise from current source Q CS is modulated by oscillator switching 73

g m -cell Transfer Function small-signal gain in the presence of a large signal I OUT di OUT dv IN VIN -g d/f 0 1/f 0 g i 1/f 0 T 0 T 0 T 0 /4 / 4 ( ) ji0t g t e dt sin( i d ) 1 gi gd d id k Fourier domain (magnitude) complex harmonic components g -4 g - g 0 g g 4-4f 0-3f 0 -f 0 -f 0 f 0 f 0 3f 0 4f 0 74

LC-Tank Noise Contribution phase-modulating noise component: 1 ipm in, O ( f0 ) in, O ( f0 ) in, O ( f0 ) in, O ( f0) i ( g g ) v ( f ) ( g g ) v ( f ) PM 0 N 0 0 N 0 phase-related noise power (k>>1, g=g 0 =g ± ): TK 0 i ( R ) ( g g ) v ( R ) PM LC-tank noise transfer function: ( TK ) ( g0 g ) GTK g R LC-tank noise factor: N TK PM TK g0 g v R N TK GTKv R N TK i ( R ) ( ) ( ) ( ) 4KTGTK F( RTK ) 1 4KTG 4KTG 4KTG 4KTG TK TK TK TK 79

Collector-Current Current Noise Transfer Function in Limiting Region i C1 V CC CV L CV R TK / R TK / i C1 Q 1 i C1 Q 1 I TAIL i C1 80

Collector-Current Current Noise Transfer Function in Limiting Region i C1 i C1 i C1 i C1 R TK / R TK / R TK / R TK / Q 1 Q 1 i C1 I TAIL i ( I ) 0 PM C 81

Base-Resistance Noise Transfer Function in Limiting Region V CC R TK / R TK / R TK / R TK / CV L CV Q 1 v B1 g m v B1 Q 1 v B1 g m v B1 Q 1 gm I TAIL I TAIL I TAIL i ( r ) 0 PM B g m -cell input-noise linear and limiting transfer function: g( vn, g m IN ) : 0 -g 1 / f 0 N ( min ) ( N ( B ) N ( C ) / m) 4 B / m v g v r i I g KTr KT g 8

g m -Cell Noise Contributions phase-related noise power: 1 gi m IN i i m IN m IN m IN i ( g ) ( g g ) v ( g ) v ( g ) dg v ( g ) PM N N N d d g m -cell noise transfer function: gm 1 g ( g ) dg d( ) ( kg ) kg k g m -cell noise factors: m IN TK TK PM B kgtk KTrB i ( r ) 4 F( rb ) krg B TK kc 4KTG 4KTG TK TK PM C kgtk KT gm i ( I ) / 1 F( IC ) kgtk / gm 4KTG 4KTG TK input g m -cell noise around odd multiples of the oscillation frequency is folded to the LC-tank noise around the oscillation frequency TK 87

Tail-Current Noise Transfer Function g m -cell large-signal V-to-I transfer function I OUT 1 I OUT VIN -1 1 /f 0 1/f 0 c i1 sin((i1) / ) (i1) / Fourier domain (magnitude) complex harmonic components c -1 c -3 c 3 c 1-4f 0-3f 0 -f 0 -f 0 f 0 f 0 3f 0 4f 0 9

phase-related noise power: ipm, DIFF ( ITCS ) 1 ipm ( ITCS ) in ( ITCS ) 4 4 TCS-noise transfer function: 1 g ( ITCS ) 4 TCS-noise factor: TCS-Noise Contribution i ( I ) (1 ) (1 ) PM TCS KTgm rbgm KT kgtk kc F( ITCS ) 4KTG 4KTG 4KTG TK TK TK 1 1 k(1 kc) k( kc) kf(ic IB ) F( rb ) TCS noise around even multiples of the oscillation frequency is folded to the LC-tank noise around the oscillation frequency 98

Switching-Oscillator Phase Noise Noise factor: F F( R ) F( I ) F( I ) F( r ) F( I ) TK C B B TCS 1 1 1 1 F 1 kck( kc) 1 (1 k)( kc) Phase noise: L L L L L L ( R ) ( I ) ( I ) ( r ) ( I ) 4KTG F TK C B B TCS TK (4 CTOT) v (4 CTOT) S L 1 4KTG 1 (1 )( ) TK k kc (4 C ) TOT ( ) 8VT k 99

Phase Noise Model of Bipolar Switching LC-Oscillators F 1 1 1 kck( kc) Constant phase-noise contributions LC-tank noise contribution ~ 1 g m -cell current shot noise contribution ~ ½ Loop-gain related contributions g m -cell base-resistance noise contribution ~ ck phase-noise contribution of the bias current source is k-times larger then the noise contribution of the g m -cell ~ k(½+ck)! 100

Low/High-Performance VCO Designs high loop-gain, high quality LC-tank, BCS noise eliminated: e.g., k>>1(=10), c<<1(~0.01) 1 1 kc 8 1 1 1 L ~ ~ k 5 10 10 k high loop-gain, high quality LC-tank: e.g., k>>1(=10), c<<1(~0.01) 1 1 k( kc) kc 3 1 1 L ~ ~ k k 5 10 k low loop-gain, low quality LC-tank: e.g., k~1(=), c~1(~0.5) 3 1 (1 k) 11 L ~ ~ 1 k 8 101

Single/Double-Switch Switch CMOS LC-VCOs i ( G ) KTG N TK i GTK TK i D3 V DD i ( I ) KT g N D, P P mp, Q 3 Q 4 i D4 L/ L/ C C i GTK R TK / R TK / L/ L/ C C R TK / R TK / i D1 Q 1 Q i D i ( I ) KTg N D Q CS m i BCS i D1 Q 1 Q i ( I ) KT g N D, N N m, N i D d 1 k i ( I ) N BCS KTg mcs, Q CS i BCS d 1 4k 10

Phase Noise Model of CMOS LC-Oscillators Noise factor ( N = P, g m,n =g m,p, g m,n,cs =g m,n ): F F( R ) F( I ) F( I ) SS TK D BCS F 1 k 1 (1 k) SS F F( R ) F(4 I ) F( I ) DS TK D BCS F 1 k 1 (1 k) DS Phase noise: L L L L ( R ) ( I ) ( I ) 4KTG F TK D BCS TK (4 CTOT) v (4 CTOT) S L SS 4KTGTK 1 (1 k) (4 C ) TOT ( ITAILRTK ) L DS 4KTGTK 1 (1 k) (4 C ) 4 TOT ( ITAILRTK ) 103

Phase Noise Model of CMOS LC-Oscillators F 1 k Constant phase-noise contributions LC-tank noise contribution ~ 1 g m -cell drain-current thermal noise contribution ~ Loop-gain related contributions bias current source noise contribution ~ k 104

CMOS vs. Bipolar LC-Oscillators noise factors (for removed BCS noise): FBIP 1 1 kc FCMOS 1 bipolar VCO better for the same power consumption (v s,bip =v s,cmos ) 3 5 kc 3 kr B R 1 TK e.g., k=10, R TK =1000 rb 1000 10 8.4 e.g., k=10, R TK =100 100 rb 0.84 10 105

CMOS vs. Bipolar LC-Oscillators power consumption figure of merit: FOM 10log L( ) VCCICC 0 V CC =1.8V,v s,bip =0.4V,v s,ss-cmos =1.V, (3I CC,BIP =I CC,SS-CMOS ) FOM FOM BIP SSCMOS 4.8dB V CC =1.8V,v s,bip =0.4V,v s,ds-cmos =1.V, (1.5I CC,BIP =I CC,DS-CMOS ) FOM FOM BIP DSCMOS 7.8dB 106

Phase-Noise Model Conclusions Parametric Phase-Noise Model electrical circuit parameters (loop gain) worst-case phase noise (bandwidth unlimited) Bipolar vs. CMOS LC-Oscillators bipolar loop-gain related contributions v S, BIP ~k (<<V CC ), v S,CMOS ~V CC bipolar capacitive tapping for larger v S, BIP, but also larger k-related noise contributions and power consumption 107

So Far VCO design parameters Design requirement Oscillating frequency.1ghz Tuning range 400MHz Voltage swing 0.7V Phase noise -110dBc@1MHz Supply voltage 3V Power consumption 10mW Technology parameters Values Technology BiCMOS Number of metals 4 Transit frequency 50GHz MIM capacitors available Varactors available 109

Suppression of Noise in Oscillator s Tail-Current Source 110

VCO Phase-Noise gm noise power(lc- tank,- PN = signal power cell,current (~k ) source) TCS noise >> LC-tank noise + g m -cell noise VCO noise power ~ 1 or c k phase noise ~ 1/k or const TCS noise suppressed VCO noise power ~ 1 or c k phase noise ~ 1/k or 1/k 111

comone miter(c E) resona ntinducti vedegene ration(ri D) resistiv edegener ation(rd ) Bias Noise Reduction Techniques resistive degeneration inductive degeneration filtering? I TAIL ITAIL I TAIL V IN V IN + R - D LD V IN C D high supply required large area if integrated noise injection if discrete transconductor noise always ON reduced output impedance 11

Capacitive Filtering AC short 1 0 d / f 0 1 d ' (1 d ) n F '( IC ) ~ k 1/f 0 AC open 1 0 d/ f0 1/f 0 1 d k n F( IC ) ~ for k=10, d=0.5%, d =50.5%, and F >F 113

Resonant-Inductive Degeneration (RID) high TCS noise suppression V IN I TAIL no voltage headroom integration C L RID integrated degenerative inductor (L RID ) matched with base-emitter capacitance (C ) at f 0 114

So Far VCO design parameters Design requirement Oscillating frequency.1ghz Tuning range 400MHz Voltage swing 0.7V Phase noise -110dBc@1MHz Supply voltage 3V Power consumption 10mW Technology parameters Values Technology BiCMOS Number of metals 4 Transit frequency 50GHz MIM capacitors available Varactors available 115