Spin Dynamics in Single GaAs Nanowires

Similar documents
Electron spins in nonmagnetic semiconductors

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

III-V nanostructured materials synthesized by MBE droplet epitaxy

Optical Properties of Solid from DFT

Nature, Vol 458, 2009 Leon Camenzind FMM University of Basel,

Spin Orbit Coupling (SOC) in Graphene

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Exciton spectroscopy

Experimental discovery of the spin-hall effect in Rashba spin-orbit coupled semiconductor systems

Luminescence Process

Spin Lifetime Measurements in MBE-Grown GaAs Epilayers

arxiv: v2 [cond-mat.mes-hall] 6 Apr 2011

Physics of Semiconductors (Problems for report)

Spin relaxation in low-dimensional systems

Luminescence basics. Slide # 1

Electrical spin-injection into semiconductors

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

+ - Indirect excitons. Exciton: bound pair of an electron and a hole.

Christian Scheller Physical Review Letters PRL 100, (2008)

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Chapter 3 Properties of Nanostructures

Optical Nonlinearities in Quantum Wells

SUPPLEMENTARY INFORMATION

Quantum Confinement in Graphene

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Using Light to Prepare and Probe an Electron Spin in a Quantum Dot

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Information for

Introduction to Optoelectronic Device Simulation by Joachim Piprek

Dynamics of electrons in surface states with large spin-orbit splitting. L. Perfetti, Laboratoire des Solides Irradiés

Calculation on the Band Structure of GaAs using k p -theory FFF042

Spin Transport in III-V Semiconductor Structures

GeSi Quantum Dot Superlattices

Energy Band Calculations for Dynamic Gain Models in Semiconductor Quantum Well Lasers

Electronic and Optoelectronic Properties of Semiconductor Structures

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft

Anisotropic spin splitting in InGaAs wire structures

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot

Magnetic control of valley pseudospin in monolayer WSe 2

Electroluminescence from Silicon and Germanium Nanostructures

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

SUPPLEMENTARY INFORMATION. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS 2 and WS 2

Polariton laser in micropillar cavities

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Dirac matter: Magneto-optical studies

Defense Technical Information Center Compilation Part Notice

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Supported by NSF and ARL

SUPPLEMENTARY INFORMATION

Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling

Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton

Optical Manipulation of an Electron Spin in Quantum Dots

Level Repulsion of Localised Excitons Observed in Near-Field Photoluminescence Spectra

Lecture I. Spin Orbitronics

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Semiconductor Fundamentals. Professor Chee Hing Tan

Cleveland, OH 44106, USA *

Spin Dynamics in Semiconductors, Chapter 4 of Semiconductor Spintronics and Quantum Computation edited by D. D. Awschalom, D. Loss, and N. Samarth.

Supporting Information. Polaron Self-localization in White-light. Emitting Hybrid Perovskites

tunneling theory of few interacting atoms in a trap

Improved Superlattices for Spin-Polarized Electron Sources

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

Assignment 6. Solution: Assumptions - Momentum is conserved, light holes are ignored. Diagram: a) Using Eq a Verdeyen,

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation.

Q. Shen 1,2) and T. Toyoda 1,2)

Photonic devices for quantum information processing:

Spectroscopy at nanometer scale

Injection of Optically Generated Spins through Magnetic/Nonmagnetic Heterointerface: Ruling out Possible Detection Artifacts

Spectroscopy at nanometer scale

Time Dependent Perturbation Theory. Andreas Wacker Mathematical Physics Lund University

Basic cell design. Si cell

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

ON THE BAND GAPS AND BAND OFFSETS OF TYPE I MULTIPLE QUANTUM WELL (MQW) SYSTEM

Emissione di luce in campo prossimo da atomi artificiali

Spin-orbit coupling: Dirac equation

Microscopic Modelling of the Optical Properties of Quantum-Well Semiconductor Lasers

Nanoscience galore: hybrid and nanoscale photonics

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

Optical Properties of Lattice Vibrations

Semiconductors and Optoelectronics. Today Semiconductors Acoustics. Tomorrow Come to CH325 Exercises Tours

Ph.D. Thesis Synopsis

Spin-resolved photoelectron spectroscopy

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED

Physics and Material Science of Semiconductor Nanostructures

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3

Optical properties of single-layer, double-layer, and bulk MoS2

Introduction to scintillators

Transcription:

1 Dr. Max Mustermann Referat Kommunikation & Marketing Verwaltung Spin Dynamics in Single GaAs Nanowires F. Dirnberger, S. Furthmeier, M. Forsch, A. Bayer, J. Hubmann, B. Bauer, J. Zweck, E. Reiger, C. Schüller, T. Korn and D. Bougeard Institute for Experimental and Applied Physics, University of Regensburg, Germany

2 Motivation Spin-FET in 1D Majorana fermions SOI and spin dynamics

3 Motivation GaAs nanowires: hexagonal wurtzite phase can be stabilized GaAs nanowires: due to large surface-area-to-volume ratio Spin-FET in 1D Majorana fermions SOI and spin dynamics

4 Motivation GaAs nanowires: hexagonal wurtzite phase can be stabilized GaAs nanowires: due to large surface-area-to-volume ratio Zincblende: Spin-FET in 1D Majorana fermions SOI and spin dynamics

5 Motivation GaAs nanowires: hexagonal wurtzite phase can be stabilized GaAs nanowires: due to large surface-area-to-volume ratio Wurtzite: Zincblende: Spin-FET in 1D Majorana fermions SOI and spin dynamics

6 Motivation Optical Orientation with circularly polarized light: Δm j = ±1 Zincblende:

7 Motivation Optical Orientation with circularly polarized light: Δm j = ±1 Wurtzite: Zincblende:

8 Motivation Optical Orientation with circularly polarized light: Δm j = ±1 Wurtzite: Non-invasive optical approach: Spin relaxation dynamics Spin-orbit interaction }?

9 Outline Demonstration of optical spin injection in a single nanowire Spin dynamics in wurtzite GaAs nanowires Spin-orbit interaction and the role of the core-shell interface

10 Optical spin injection into single freestanding wurtzite GaAs nanowires 2 µm Stacking-fault-free, pure wurtzite crystal structure: 4 5 µm length, 80 120 nm diameter Furthmeier et al., APL 105, 222109 (2014)

11 Optical spin injection into single freestanding wurtzite GaAs nanowires 2 µm Stacking-fault-free, pure wurtzite crystal structure: 4 5 µm length, 80 120 nm diameter Furthmeier et al., APL 105, 222109 (2014) Deposition of AlGaAs passivation shell to disable the dominant nonradiative recombination at the bare GaAs surface

12 Optical spin injection into single freestanding wurtzite GaAs nanowires 2 µm Optical axis wurtzite c-axis No linear polarization effects Stacking-fault-free, pure wurtzite crystal structure: 4 5 µm length, 80 120 nm diameter Furthmeier et al., APL 105, 222109 (2014) Deposition of AlGaAs passivation shell to disable the dominant nonradiative recombination at the bare GaAs surface

13 Optical spin orientation in GaAs nanowires Excitation and detection with same (I + ) and opposite (I ) helicity P C = I + I I + + I

14 Optical spin orientation in GaAs nanowires Excitation and detection with same (I + ) and opposite (I ) helicity P C = I + I I + + I PL Intensity (arb. u.) T = 4.2 K B = 0 Carbon defects (substrate) Spin I + Spin I P C = I + I I + + I ~50% 1.48 1.50 1.52 1.54 Emission Energy (ev) Detected degrees of circular polarization up to 50%

15 Hanle Experiment B

C 16 Hanle Experiment T = 4.2 K B P S (arb. u.) -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T)

C 17 Hanle Experiment T = 4.2 K B P S (arb. u.) C -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T) ω L : Larmor frequency τ* : spin decay time

18 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S (B ) ~ exp( t/τ s ) cos(ω L t ) B = 300 mt P S (arb. u.) B = 200 mt B = 0 0 1 2 3 4 5 Time (ns)

19 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S (B ) ~ exp( t/τ s ) cos(ω L t ) B = 300 mt P S (arb. u.) B = 200 mt B = 0 0 1 2 3 4 5 Time (ns)

20 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S (B ) ~ exp( t/τ s ) cos(ω L t ) B = 300 mt P S (arb. u.) B = 200 mt B = 0 0 1 2 3 4 5 Time (ns) Exponential decay yields the spin relaxation time τ s (B ) Larmor frequency ω L delivers the electron g-factor via ω L (B) = g e μ B ħ B

25 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S (B ) ~ exp( t/τ s ) cos(ω L t ) B = 300 mt 1.6 P S (arb. u.) B = 200 mt B = 0 Spin relaxation time S (ns) 1.4 1.2 1.0 0.8 0.6 0.4 0 1 2 3 4 5 Time (ns) 0 100 200 300 400 Magnetic field (mt)

26 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S (B ) ~ exp( t/τ s ) cos(ω L t ) B = 300 mt 1.6 P S (arb. u.) B = 200 mt B = 0 Spin relaxation time S (ns) 1.4 1.2 1.0 0.8 0.6 0.4 τ s drops with B 0 1 2 3 4 5 Time (ns) 0 100 200 300 400 Magnetic field (mt)

27 Spin dynamics in wurtzite GaAs nanowires counterintuitive compared to related bulk wurtzite semiconductors Bulk wurtzite GaN Nanowire wurtzite GaAs Spin relaxation time S (ns) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 τ S 0 1 3 τ S 0 Buß et al., APL 95, 192107 (2009) 0 100 200 300 400 Magnetic field (mt)

SOI and the role of the core-shell interface 28

SOI and the role of the core-shell interface 29

30 SOI and the role of the core-shell interface Large GaAs/AlGaAs core shell interface

31 SOI and the role of the core-shell interface Large GaAs/AlGaAs core shell interface Strong Rashba-like spin orbit fields due to natural interface asymmetry (NIA)

32 SOI and the role of the core-shell interface Large GaAs/AlGaAs core shell interface Strong Rashba-like spin orbit fields due to natural interface asymmetry (NIA)

SOI and the role of the core-shell interface 33

C 34 Summary First optical spin injection in a single nanowire Hanle Measurement P S (arb. u.) -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T) B = 400 mt Spin dynamics in wurtzite GaAs nanowires Spin relaxation time τ s ~ 1.5 ns Magnetic field: τ s drops Model: Rashba fields due to large GaAs/AlGaAs core shell interface P S (arb. u.) B = 300 mt B = 200 mt B = 0 florian.dirnberger@ur.de 0 1 2 3 4 5 Time (ns)

C 35 Summary First optical spin injection in a single nanowire Hanle Measurement P S (arb. u.) -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T) Spin dynamics in wurtzite GaAs nanowires Spin relaxation time τ s ~ 1.5 ns Magnetic field: τ s drops Model: Rashba fields due to large GaAs/AlGaAs core shell interface florian.dirnberger@ur.de

36 Outlook Nanowire Quantum Wire florian.dirnberger@ur.de

37 Outlook Nanowire Quantum Wire Looking for further evidence: Shrinking the nanowire diameter towards quantum sizes florian.dirnberger@ur.de

38 Many thanks to Stephan Furthmeier Moritz Forsch Andreas Bayer Joachim Hubmann Benedikt Bauer Josef Zweck Elisabeth Reiger Christian Schüller Tobias Korn Dominique Bougeard the DFG for financial support via SFB 689 You for your attention!

39

40 Outline Optical spin orientation in wurtzite GaAs nanowires Proof for optical spin injection in a single wurtzite GaAs nanowire Spin dynamics in wurtzite GaAs nanowires Spin relaxation: Model

41 Purely wurtzite GaAs nanowires with MBE growth Typical GaAs nanowire sample Pure wurtzite structure Pure wurtzite wires: 4 8 µm length, 80 120 nm diameter Deposition of AlGaAs passivation shell to disable the dominant nonradiative recombination at the bare GaAs surface

42 Optical spin injection in wurtzite GaAs requires: Circularly polarized light Direction of polarization c-axis Lying nanowires: Optical selection rules lead to different absorption coefficients Depolarization of circular excitation and detection

43 Optical spin injection in wurtzite GaAs nanowires Circularly polarized light Direction of polarization wurtzite c-axis

44 Optical spin injection in wurtzite GaAs nanowires Circularly polarized light Direction of polarization wurtzite c-axis Probing freestanding nanowires Optical axis c-axis No linear polarization effects

45 Probing freestanding nanowires μ-photoluminescence in confocal configuration λ/4 c-axis ħω circ Excitation and detection with same ( ) and opposite ( ) helicity P C = I I I + I

46 Probing freestanding nanowires P C = I Co I Contra I Co + I Contra λ/4 c-axis

Sample preparation for investigation of single nanowires 47

48 Sample preparation for investigation of single nanowires Reduction of wire density by ultrasonic bath dip

49 Sample preparation for investigation of single nanowires Creating patterns on the samples for the identification of single wires

50 Investigation of single freestanding nanowires free exciton substrate 2D scans allow identification of single nanowires

51 Optical spin injection P C = I Co I Contra Excitation and detection with same (Co) and opposite (Contra) helicity I Co + I Contra cb ħω circ hh lh

52 Crystal structure of GaAs nanowires 3D and 2D: only cubic zinc-blende Nanowires: unique access to the hexagonal wurtzite phase Properties of wurtzite GaAs not known exactly: - Band gap? - Effective masses? exciton binding energy? - Conduction band symmetry? - Spin dynamics / Landé factor g?

Crystal Structure & Electronic Properties 53 Electronic Structure of heterocrystalline Nanowires Most of the nanowires contain zinc-blende and wurtzite Type II (staggered) band alignment -> excitons bound to the ZB-WZ interfaces E phot = E gap - E X - ΔE VB

Crystal Structure & Electronic Properties 54 Electronic Structure of heterocrystalline Nanowires Most of the nanowires contain zinc-blende and wurtzite Type II (staggered) band alignment -> excitons bound to the ZB-WZ interfaces E phot = E gap - E X - ΔE VB Short segments of ZB / WZ -> Quantum confinement E phot = E gap - E X - ΔE VB + E conf, electron + E conf, hole

Crystal Structure & Electronic Properties 55 Luminescence Spectra of mixed Crystal Nanowires Broad emission below the free exciton peak Lowest energy gives lower bound of valence band offset: E phot, min = 1.455 ev > E g - ΔE VB - E X -> ΔE VB > 60 mev (Calculations: 65-85 mev) No free exciton signal

56 Luminescence of purely wurtzite GaAs nanowires T = 4.2 K free exciton PL Intensity (arb. u.) substrate 1.48 1.50 1.52 1.54 Emission Energy (ev) (Nearly) defect-free wurtzite structure Sharp free exciton emission peak at ~ 1. 52 ev, slightly larger than in zinc-blende (E = 1.515 ev)

57 Luminescence of purely wurtzite GaAs nanowires PL Intensity (arb. u.) 10 0 10-1 10-2 R ~ 10 ns 0 10 20 30 40 Time (ns) Monoexponential decay Long exciton lifetimes up to 10 ns, significantly longer than the pure spin dephasing times T 2 ~ 1 ns

58 Optical spin injection in wurtzite GaAs nanowires T = 4.2 K P C = I I I + I ~50% PL Intensity (arb. u.) C-GaAs substrate Spin Spin 1.48 1.50 1.52 1.54 Emission Energy (ev) Detected degrees of circular polarization up to 50%

59 Hanle - Experiment B P S (arb. u.) -0.2 0.0 0.2 Magnetic Field (T)

60 Hanle - Experiment B P S (arb. u.) -0.2 0.0 0.2 Magnetic Field (T)

61 Hanle - Experiment B P S (arb. u.) -0.2 0.0 0.2 Magnetic Field (T)

62 Hanle - Experiment P S B ~ 1 1 + (ω L τ )² P S (arb. u.) FWHM ~ 1/(ω L τ ) ω L = g e μ B ħ B 1 τ = 1 + 1 τ R T 2-0.2 0.0 0.2 Magnetic Field (T)

63 Hanle - Experiment SPG (arb. units) * novalue * 210ps * 420ps * 520ps * 730ps * 610ps T = 50K T = 40K T = 30K T = 20K T = 10K -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T) T = 4.5K

Hanle Experiment 64

65 Hanle Experiment T = 4.2 K P S (arb. u.) -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T)

66 Hanle Experiment T = 4.2 K P S (arb. u.) P S B ~ 1 1 + (ω L τ )² -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T) ω L : Larmor frequency τ : spin decay time

67 Outline Optical spin orientation in wurtzite GaAs nanowires Proof for optical spin injection in a single wurtzite GaAs nanowire Spin dynamics in wurtzite GaAs nanowires g-factor spin decay time Spin relaxation: Model

68 Time-resolved photoluminescence B > 0 P S (arb. u.) ~ exp t τ cos ω L t 0 1 2 3 4 5 Time (ns)

69 Time-resolved photoluminescence B > 0 P S (arb. u.) 0 1 2 3 4 5 Time (ns)

70 Time-resolved photoluminescence B > 0 P S (arb. u.) 0.5 1.0 1.5 Time (ns) ħω circ

71 Time-resolved photoluminescence B > 0 P S (arb. u.) 0.5 1.0 1.5 Time (ns) ħω circ ħω circ

72 Time-resolved photoluminescence B > 0 P S (arb. u.) 0.5 1.0 1.5 Time (ns) ħω circ ħω circ ħω circ

73 Spin dynamics in wurtzite GaAs nanowires T = 4.2 K B = 300 mt P S (arb. u.) 0 1 2 3 4 5 Time (ns)

74 Spin dynamics in wurtzite GaAs nanowires T = 4.2 K B = 300 mt P S (arb. u.) ~ exp t τ cos ω L t 0 1 2 3 4 5 Time (ns)

75 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S B ~ exp t τ cos ω L t B = 300 mt P S (arb. u.) B = 200 mt B = 0 0 1 2 3 4 5 Time (ns) Exponential decay yields the spin decay time τ (B) Larmor frequency ω L delivers the electron g-factor via ω L (B) = g e μ B ħ B

76 Spin dynamics in wurtzite GaAs nanowires Larmor frequency (1/ns) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 Magnetic Field (mt)

77 Spin dynamics in wurtzite GaAs nanowires Larmor frequency (1/ns) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 Magnetic Field (mt) ω L = g e μ B ħ B g e ~ 0. 25 Absolute value of the g-factor in wurtzite GaAs nanowires is g e For comparison: g-factor in bulk zinc-blende GaAs is g e = 0.44 ~ 0. 25

78 Spin dynamics in wurtzite GaAs nanowires T = 4.2 K B = 400 mt P S (arb. u.) ~ exp t τ 0 1 2 3 4 5 Time (ns)

Spin dynamics in wurtzite GaAs nanowires 79

80 Outline Optical spin orientation in wurtzite GaAs nanowires Proof for optical spin injection in a single wurtzite GaAs nanowire Spin dynamics in wurtzite GaAs nanowires g-factor spin decay time Spin relaxation: Model bulk wurtzite semiconductors wurtzite GaAs nanowires

81 Spin relaxation in bulk wurtzite semiconductors Dominant spin relaxation mechanism: Dyakonov-Perel k-dependent spin-orbit fields cause precession of the electron spins and lead to ensemble dephasing

82 Spin relaxation in bulk wurtzite semiconductors Spin orbit interaction: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0

83 Spin relaxation in bulk wurtzite semiconductors Spin orbit interaction: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0 k 3 -dependent term due to bulk inversion asymmetry, which also describes the spin-splitting in bulk zinc-blende semiconductors

84 Spin relaxation in bulk wurtzite semiconductors Spin orbit interaction: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0 k-linear contribution due to an intrinsic wurtzite structure inversion asymmetry

85 Spin relaxation in bulk wurtzite semiconductors Spin orbit interaction: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0 k-linear contribution due to an intrinsic wurtzite structure inversion asymmetry τ z = 1 2 τ x = 1 2 τ y

86 Spin relaxation in bulk wurtzite semiconductors Spin relaxation due to Dyakonov-Perel scattering: B = 0 τ S 0 = τ z τ z = 1 2 τ x = 1 2 τ y

87 Spin relaxation in bulk wurtzite semiconductors Spin relaxation due to Dyakonov-Perel scattering: B 0 x Spin precession τ eff = 1 τz + 2 1 τ y 1 = 4 3 τ S 0 τ z = 1 2 τ x = 1 2 τ y

Buß et al., APL 95, 192107(2009) 88 Spin relaxation in bulk wurtzite semiconductors Spin relaxation due to Dyakonov-Perel scattering: Spin dynamics in bulk wurtzite GaN τ eff = 1 τz + 2 1 τ y 1 = 4 3 τ S 0

89 Spin relaxation in wurtzite GaAs nanowires Spin relaxation due to Dyakonov-Perel scattering: Bulk wurtzite GaN Nanowire wurtzite GaAs Buß et al., APL 95, 192107(2009) τ z = 1 2 τ x = 1 2 τ y

90 Spin relaxation in wurtzite GaAs nanowires Spin relaxation due to Dyakonov-Perel scattering: Bulk wurtzite GaN Nanowire wurtzite GaAs Buß et al., APL 95, 192107(2009) τ z = 1 2 τ x = 1 2 τ y τ z = 5τ x = 5τ y

91 Spin relaxation in wurtzite GaAs nanowires Spin relaxation due to Dyakonov-Perel scattering: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0 +

92 Spin relaxation in wurtzite GaAs nanowires Spin relaxation due to Dyakonov-Perel scattering: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0 + Suggestion: Rashba contribution due to structure inversion asymme at the large GaAs/AlGaAs core-shell interface

93 Spin relaxation in wurtzite GaAs nanowires Suggestion: Rashba fields due to GaAs/AlGaAs core-shell interface

94 Summary T = 4.2 K First optical spin injection in a single nanowire P S (arb. u.) Hanle Measurement -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T)

95 Summary T = 4.2 K First optical spin injection in a single nanowire P S (arb. u.) Hanle Measurement -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T) Spin dynamics in wurtzite GaAs nanowires g-factor: g e ~ 0.23 Spin decay time τ ~ 1.3 ns Magnetic field: τ drops Rasha fields due to large GaAs/AlGaAs core-shell interface? P S (arb. u.) B = 400 mt B = 300 mt B = 200 mt B = 0 0 1 2 3 4 5 Time (ns)

96 Summary T = 4.2 K First optical spin injection in a single nanowire P S (arb. u.) Hanle Measurement -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T) Spin dynamics in wurtzite GaAs nanowires g-factor: g e ~ 0.25 Spin decay time τ ~ 1.3 ns Magnetic field: τ drops Rasha fields due to large GaAs/AlGaAs core-shell interface?

97 Summary T = 4.2 K First optical spin injection in a single nanowire P S (arb. u.) Hanle Measurement -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T) Spin dynamics in wurtzite GaAs nanowires g-factor: g e ~ 0.25 Spin decay time τ ~ 1.5 ns Magnetic field: τ drops Rasha fields due to large GaAs/AlGaAs core-shell interface?

98 Summary T = 4.2 K First optical spin injection in a single nanowire P S (arb. u.) Hanle Measurement -0.3-0.2-0.1 0.0 0.1 0.2 0.3 Magnetic Field (T) Spin dynamics in wurtzite GaAs nanowires g-factor: g e ~ 0.25 Spin decay time τ ~ 1.5 ns Magnetic field: τ drops Rashba fields due to large GaAs/AlGaAs core-shell interface?