Fluctuation relations and nonequilibrium thermodynamics II

Similar documents
Nonequilibrium thermodynamics at the microscale

The Jarzynski Equation and the Fluctuation Theorem

arxiv:cond-mat/ v2 [cond-mat.soft] 29 Nov 2004

arxiv: v3 [cond-mat.stat-mech] 13 Nov 2007

Statistical properties of entropy production derived from fluctuation theorems

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 7 Mar 2006

Efficiency at Maximum Power in Weak Dissipation Regimes

Stochastic thermodynamics

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012

arxiv: v1 [cond-mat.stat-mech] 10 Aug 2015

J. Stat. Mech. (2011) P07008

Nonequilibrium work relations: foundations and applications

Beyond the Second Law of Thermodynamics

Fluctuations in Small Systems the case of single molecule experiments

Non-equilibrium phenomena and fluctuation relations

Aspects of nonautonomous molecular dynamics

1 Algebraic preliminaries

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg

LANGEVIN EQUATION AND THERMODYNAMICS

Doing small systems: Fluctuation Relations and the Arrow of Time

Fluctuation Theorems of Work and Entropy in Hamiltonian Systems

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ

Generalized Classical and Quantum Dynamics Within a Nonextensive Approach

Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences

Quantum Fluctuation Relations and the Arrow of Time

Free energy computation by controlled Langevin dynamics

Energy Fluctuations in Thermally Isolated Driven System

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 Jul 2001

Distinguish between. and non-thermal energy sources.

Invaded cluster dynamics for frustrated models

Fluctuation theorem between non-equilibrium states in an RC circuit

Path-integral analysis of fluctuation theorems for general Langevin processes arxiv:cond-mat/ v2 [cond-mat.stat-mech] 29 Jun 2006.

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000

Quantum Quenches in Extended Systems

Introduction to Fluctuation Theorems

Fluctuation theorem in systems in contact with different heath baths: theory and experiments.

Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy

arxiv: v2 [cond-mat.stat-mech] 28 Mar 2013

arxiv: v2 [cond-mat.stat-mech] 3 Jun 2018

Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy

Switching Regime Estimation

A Parallel-pulling Protocol for Free Energy Evaluation INTRODUCTION B A) , p

Fluctuation theorems. Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009

Free energy recovery in single molecule experiments

Fluctuation theorems: where do we go from here?

Fluctuation, Dissipation and the Arrow of Time

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 5 Oct 2005

Math 240 Calculus III

arxiv: v2 [cond-mat.stat-mech] 18 Jun 2009

Entropy production and time asymmetry in nonequilibrium fluctuations

Information Thermodynamics on Causal Networks

Optimum protocol for fast-switching free-energy calculations

arxiv: v2 [cond-mat.stat-mech] 9 Jul 2012

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices

88 Chapter 2. First Order Differential Equations. Problems 1 through 6 involve equations of the form dy/dt = f (y). In each problem sketch

Entropy and the Second Law of Thermodynamics

Stochastic equations for thermodynamics

Boltzmann and the Interpretation of Entropy

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 12 Jan 2006

Stochastic thermodynamics of information

ODE Homework Solutions of Linear Homogeneous Equations; the Wronskian

arxiv:physics/ v2 [physics.class-ph] 18 Dec 2006

Appendix 3. Derivatives of Vectors and Vector-Valued Functions DERIVATIVES OF VECTORS AND VECTOR-VALUED FUNCTIONS

Optimal quantum driving of a thermal machine

z = 1 2 x 3 4 y + 3 y dt

Fluctuation Relations for Stochastic Systems far from Equilibrium

Feynman s path integral approach to quantum physics and its relativistic generalization

Lecture 12: Detailed balance and Eigenfunction methods

x log x, which is strictly convex, and use Jensen s Inequality:

Adiabatic piston - Draft for MEMPHYS

Introduction to nonequilibrium physics

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 8 Sep 1999

Physical description of nature from a system-internal viewpoint. Abstract

Chapter 2 Thermodynamics

Theoretical Advances toward Understanding Recent Experiments in Biophysical Chemistry. Eric Norman Zimanyi

Relaxation processes and entropic traps in the Backgammon model

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito

Mean Field Dynamical Exponents in Finite-Dimensional Ising Spin Glass

Classical thermodynamics

2326 Problem Sheet 1. Solutions 1. First Order Differential Equations. Question 1: Solve the following, given an explicit solution if possible:

A path integral approach to the Langevin equation

Large deviation functions and fluctuation theorems in heat transport

FIssion of Excited Systems at Tandem-Alpi

arxiv:hep-th/ v1 1 Sep 2003

Fluctuation, Dissipation and the Arrow of Time

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry

arxiv: v2 [cond-mat.stat-mech] 23 Jul 2018

or we could divide the total time T into N steps, with δ = T/N. Then and then we could insert the identity everywhere along the path.

Symmetries and reduction techniques for dissipative models

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Entropy Decrease in Isolated Systems with an Internal Wall undergoing Brownian Motion

Collaborations: Tsampikos Kottos (Gottingen) Chen Sarig (BGU)

Effective dynamics for the (overdamped) Langevin equation

Work and heat. Expansion Work. Heat Transactions. Chapter 2 of Atkins: The First Law: Concepts. Sections of Atkins

The Nonequilibrium Thermodynamics of Small Systems

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

16. Working with the Langevin and Fokker-Planck equations

Rapidly converging methods for the location of quantum critical points from finite size data

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 23 Sep 2005

Transcription:

Fluctuations II p. 1/31 Fluctuation relations and nonequilibrium thermodynamics II Alberto Imparato and Luca Peliti Dipartimento di Fisica, Unità CNISM and Sezione INFN Politecnico di Torino, Torino (Italy) Dipartimento di Scienze Fisiche, Unità CNISM and Sezione INFN Università Federico II, Napoli (Italy)

Fluctuation relations for the work Fluctuations II p. 2/31

Fluctuations II p. 3/31 A Markov chain x {1, 2,...,q} t {0, 1, 2,...} Equilibrium distribution determined by hamiltonian H(x, µ): P eq (x,µ) = e βh(x,µ) Z µ Z µ = x e βh(x,µ) = e βf(µ) Evolution equation for the probabilities: p(x,t + 1) = x W xx (µ(t))p(x,t) x W xx (µ)p eq (x,µ) = P eq (x,µ)

Work and heat E(µ) = H(µ) µ A µ = x A(x)P eq (x,µ) Manipulation: µ µ + dµ: de(µ) = dh(x,µ)p eq (x,µ(t)) + H(x,µ) dp eq (x,µ) x x }{{}}{{} dw dq ds eq ( ) = k B d P eq (x,µ) ln P eq (x,µ) x = k B ln P eq (x,µ) dp eq (x,µ) x Fluctuations II p. 4/31

Fluctuations II p. 5/31 Path work and heat under manipulation Path x = (x(0),x(1),x(2),...,x(t )) Manipulation protocol: µ = (µ(0),µ(1),...,µ(t 1)) W[x] = Q[x] = T 1 t=0 T 1 t=0 [H(x(t + 1),µ(t + 1)) H(x(t + 1),µ(t))] [H(x(t + 1),µ(t)) H(x(t),µ(t))] E = H(x(T ),µ(t )) H(x(0),µ(0)) = W + Q N.B. W and Q depend on the whole path, E depends only on initial and final states

Fluctuations II p. 6/31 Path probability H 0 1 2 3 4 t P[x x(0)] = W x(t ),x(t 1) (µ(t 1)) W x(2),x(1) (1)W x(1),x(0) (µ(0)) N.B.: The transitions take place with the old probability W xx (µ(t 1)), then the energy changes to H(x, µ(t))

Fluctuations II p. 7/31 Reversed path Time-reversal invariant states: Ix = x Time-reversed path: x = (x(0),x(1),...,x(t 1),x(T )) x = (x(t ),x(t 1),...,x(1),x(0)) x(t) = x(t t) = x( t) Time-reversed protocol: µ : µ(t) = µ(t t) = µ( t) t = 1,...,T Probability of the reversed transition: Ŵ xx (µ) : Ŵ xx (µ)p eq (x,µ) = W x x(µ)p eq (x,µ)

Fluctuations II p. 8/31 Detailed balance In particular, if detailed balance holds: W xx (µ) e βh(x,µ) = W x x(µ) e βh(x,µ) one has Ŵ xx (µ) = W xx (µ)

Fluctuations II p. 9/31 Probability of the reversed path W xx (µ(t)) = W xx (t) Ŵ xx (t) = W x x(t t) etc. t = 1,...T P[ x x(0)] = Ŵ x(t ), x(t 1)(T ) Ŵ x(2), x(1)(2)ŵ x(1), x(0)(1) = W x(1),x(0) (0)e β(h(x(1),µ(0)) H(x(0),µ(0))) W x(2),x(1) (1)e β(h(x(2),µ(1)) H(x(1),µ(1))) W x(t ),x(t 1) (T 1) β(h(x(t ),µ(t 1)) H(x(T 1),µ(T 1))) e = P[x x(0)] e βq[x]

Fluctuations II p. 10/31 Unconditional probabilities: Crooks s relation P[x] = P[x x(0)]p eq (x(0),µ(0)) etc. Thus P[ x] = P[ x x(0)]e βh( x(0), µ(0))/ Z µ(0) = P[x x(0)]e β{q[x] H(x(T ),µ(t ))}/ Z µ(t ) = P[x] e β{q[x] (H(x(T ),µ(t )) H(x(0),µ(0)))} ( Z µ(0) / Zµ(T ) ) Q[x] H = W[x] Z µ(0) / Zµ(T ) = e β F P[ x] = P[x] e β(w[x] F)

Fluctuations II p. 11/31 Jarzynski s equality (JE) Summing over x: e βw = x P[x] e βw[x] = e β F x β F P[ x] = e Comments: F = F(µ(T )) F(µ(0)) is the change in the equilibrium free energy with the corresponding values of the parameter µ The system is not at equilibrium at the end of the process One assumes that the system is initially at equilibrium The average is over all realizations of the process

Fluctuations II p. 12/31 Sudden change in the hamiltonian µ 0 µ 1 W[x] = H(x(0),µ 1 ) H(x(0),µ 0 ) e βw = x = 1 Z µ0 e β(h(x,µ 1) H(x,µ 0 )) e βh(x,µ 0) x e βh(x,µ 1) = Z µ 1 Z µ0 Z µ0

Fluctuations II p. 13/31 Adiabatic change µ(t) = l(t/t ) l(0) = µ 0 l(1) = µ 1 W[x] = = = T 1 t=0 t=0 T (H(x(t + 1),µ(t + 1)) H(x(t + 1),µ(t))) 1 T 1 H(x(t + 1),µ) dl T µ µ=l(t/t ) dx H(x(t dt ),µ) µ(t ) 0 µ µ=µ(t ) H(x,µ) dµ = W th µ 0 µ µ1 µ x=t/t

Fluctuations II p. 14/31 Slow parameter change W β 1 ln e βw W d = W F 0 e βw = e β( W +δw) e β W β e δw = e 1 β W β δw + 1 2 β2 δw 2 + e β W ( 1 + β2 2 ) δw 2 + Thus W d β 2 δw 2

Fluctuations II p. 15/31 Dissipation and irreversibility e β(w[x] F) = P[x] P[ x] Thus W d = W F = β 1 P[x] ln P[x] x P[ x] }{{} D(P[x] P[ x]) van den Broeck et al., 2007

Fluctuations II p. 16/31 Work distribution Define P(W) = x P(W) = x δ(w W[x]) P[x] δ(w W[x]) P[x] Then W d = β 1 dw P(W) ln P(W) P( W) = β 1 D(P(W) P( W)) The whole mutual information of P[ x] vs. P[x] is contained in the work distribution!

Fluctuations II p. 17/31 Collective coordinate Exploring equilibrium free-energy landscapes: Collective coordinate: M(x); M eq = M eq Manipulation: U (M(x),µ) H(x,µ) = H 0 (x) U(M(x),µ) Target: Free energy of the M landscape F 0 (M) = β 1 ln dx δ(m M(x)) e βh 0(x) Probability distribution for M: P eq (M) = e β(f 0(M) F 0 )

Work probability distribution Evolution operator L µ : P(x,t) = L µ(t) P(x,t) t L µ P eq (x,µ) = 0 Work: W = t 0 dt µ(t ) U (M(x(t )),µ(t )XS) µ Φ(x,W,t): Joint probability of x and of the accumulated work W : Φ(x,W,t) t = L µ(t) Φ + µ(t) U(M(x),µ(t)) µ Φ WFluctuations II p. 18/31

Fluctuations II p. 19/31 The generating function Define Ψ(x,λ,t) = dw e λw Φ(x,W,t) Then Ψ t = L µ(t)ψ + λ µ(t) U(M(x),µ(t)) µ For λ = β one obtains: Ψ Ψ(x, β,t) = e βh(x,µ(t)) Z µ(0) (1) dx Ψ(x, β,t) = e βw = Z µ(t) Z µ(0)

Proof of (1) Define Then ψ(x, t) satisfies ψ(x,t) = e βh(x,µ(t)) Z µ(0) ψ(x, 0) = P eq (x,µ(0)) = Ψ(x, β, 0) ψ t = β µ H(x,µ(t)) ψ(x, t) µ = L µ(t) ψ(x,µ(t)) β µ H(x,µ(t)) ψ(x, t) µ since ψ(x,t) P eq (x,µ(t)) and L µ P eq (x,µ) = 0: thus ψ(x,t) = Ψ(x, β,t) Fluctuations II p. 20/31

Fluctuations II p. 21/31 The basic identity Multiply (1) by δ(m M(x)) and integrate on x: δ(m M(x))e βw = dx δ(m M(x)) e βh(x,µ(t)) Z 0 = exp { β [F 0 (M) U(M,µ(t)) F 0 ]} Multiply both sides by e βu(m,µ(t)) : e βu(m,µ(t)) δ(m M(x))e βw = e β[f 0(M) F 0 ] Crooks 1999, Hummer and Szabo 2001

Fluctuations II p. 22/31 Criticism Disproving Jarzynski s equality is a minor industry E. G. D. Cohen and D. Mauzerall, J. Stat. Mech. P07006 (2004) Jeayoung Sung, cond-mat/0506214, cond-mat/0510119, cond-mat/0512250 D. H. E. Gross, cond-mat/0508721 B. Palmieri and D. Ronis, Phys. Rev. E 75, 011133 (2007) J. M. G. Vidal and J. M. Rubi, arxiv: 0704.0761, arxiv: 0707.3802, Phys. Rev. Lett. 100, 020601 (2008)

Fluctuations II p. 23/31 An example: The free expansion V V F = T S = k B T ln 2 W = 0

Fluctuations II p. 23/31 An example: The free expansion V V F = T S = k B T ln 2 W = 0 V V µ S = 0 (!)

Fluctuations II p. 24/31 The correct way v V X Work distribution for compression (left) and expansion (right) for a fixed F and varying piston velocity v. Dashed lines are molecular dynamics simulations. Bena, van den Broeck, Kawai, cond-mat/0506289

A gas with a single molecule R. H. Lua and A. Y. Grosberg, cond-mat/0502434 β, m, τ = 1 v = 2v p v w (n) = 1 [v (n 1)2 v (n)2] = 2v p (v p v (n 1)) 2 W(v, n) = n k=1 w (n) = 2nvv p 2n 2 v 2 p Fluctuations II p. 25/31

Fluctuations II p. 26/31 Fast moving piston v p 1 L v p n = 0,1 v(w) = v p + W x > L (v v p ) = L W 2v p 2v p ( ) 2 v p + 2vp W W 2πvp P(W) δ(w) P 0 + e 1 2 e W = 1 + v p L P W>0 1 2πLv 2 p e v2 p /2 } {{ 4v p L } P W>0 W 4 2πLv 2 p e v2 p /2 = 4 P W>0

Fluctuations II p. 27/31 On the concept of work H(x,µ) = H 0 (x) µ(x x 0 ) H 0 (x) = 1 2 kx2 Thermodynamical work: W th = = µ 0 µ 0 dµ x x 0 µ ( ) µ dµ k x 0 = µ2 2k + µx 0 k H 0 = H 0 µ H 0 0 = 1 2 k ( x 2 µ x 2 0 ) = µ2 2k

Fluctuations II p. 28/31 A physical example F=qE +σ σ O x x0 ẋ = Γ[ kx + µ(t)] + η(t) ẋ µ k W qs 0 = t 0 µ(t ) ẋ(t ) = µ2 2k

Fluctuations II p. 29/31 W vs. W 0 W 0 is the work of the applied force on the system W is the work of the system on the environment If H = H 0 U(x,µ), then W 0 W = U(x(t),µ(t)) U(x(0),µ(0)) W 0 satisfies a different fluctuation relation: e βw 0 0 = 1 A[x] 0 = x A[x]P[x x(0)] e βh 0(x(0)) Z 0 Bochkov and Kuzovlev, 1977

Fluctuations II p. 30/31 Proof of Bochkov and Kuzovlev s relation Sample with the free probability P 0 : P[x x(0)] P[ (x) x(0)] = e βq[x] P 0 (x(0)) = e βh 0(x(0)) Z 0 P0 (x(0)) = e βh0(x(0)) Z 0 = P 0 (x(0)) Thus, defining P 0 = P[x x(0)]p 0 (x(0)) etc., P 0 [x] P 0 [ x] = eβ( Q[x]+ H 0(x(t))) Q + H 0 = H 0 + U + W H 0 = U + W = W 0 e βw 0[x] 0 = x P 0 [ x] = P 0 [x]e βw 0[x] P 0 [x]e βw 0[x] = x P 0 [ x] = 1

Fluctuations II p. 31/31 Bibliography C. Bustamante, J. Liphardt, F. Ritort, arxiv:cond-mat/0511629 (2005); F. Ritort, Poincaré Seminar 2, 193-226 (2003) C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997); Phys. Rev. E 56, 5018 (1997); J. Stat. Phys. 96, 77 (2000) G. E. Crooks, Phys. Rev. E 60 2721 (1999); 61, 2361 (2000); Thesis (UC Berkeley, 1999) R. C. Lua, A. Y. Grosberg, J. Phys. Chem. B 109, 6805 (2005) R. Kawai, J. M. R. Parrondo, C. van den Broeck, Phys. Rev. Lett. 98, 080602 (2007); A. Gomez-Martin, J. M. R. Parrondo, C. van den Broeck, arxiv:0710.4290 (2007) I. Bena, C. van den Broeck, R. Kawai, Europhys. Lett. 71, 879 (2005) G. N. Bochkov, Y. E. Kuzovlev, Physica A 106 443, 480 (1981)