CENTRAL TERMOELÉCTRICA ANDINA UNIDAD Nº 1

Similar documents
Technical Data Sheet for AvK-Alternators

Technical Data Sheet for AvK-Alternators

Synchronous Machines

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015

Generators. What its all about

QUESTION BANK ENGINEERS ACADEMY. Power Systems Power System Stability 1

The Operation of a Generator on Infinite Busbars

MKV AC Capacitors Damping B High dielectric strength High peak-current capability Especially suitable for snubber circuits

Dynamics of the synchronous machine

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

Dynamic simulation of a five-bus system

SSC-JE EE POWER SYSTEMS: GENERATION, TRANSMISSION & DISTRIBUTION SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models

Chapter 6: Efficiency and Heating. 9/18/2003 Electromechanical Dynamics 1

EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A

A. P. Sakis Meliopoulos and George J. Cokkinides Power System Relaying, Theory and Applications. Chapter 8 2 Generator Protection 2

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

UNIT I INTRODUCTION Part A- Two marks questions

POWER SYSTEM STABILITY AND CONTROL

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES

Module 3 : Sequence Components and Fault Analysis

B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis

Loss analysis of a 1 MW class HTS synchronous motor

Chapter 3 AUTOMATIC VOLTAGE CONTROL

RESULTS OF ON-GRID OPERATION OF SUPERCONDUCTOR DYNAMIC SYNCHRONOUS CONDENSER

Introduction to Synchronous. Machines. Kevin Gaughan

CHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELF-EXCITED INDUCTION GENERATORS

T20WN. Data Sheet. Torque transducers. Special features. Installation example with bellows couplings. B en

7. Transient stability

GENERATOR INTERCONNECTION APPLICATION

ECE 421/521 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the Per-Unit System. Instructor: Kai Sun Fall 2013

Tutorial 1 (EMD) Rotary field winding

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

KINGS COLLEGE OF ENGINEERING Punalkulam

POWER SYSTEM STABILITY

DC motors. 1. Parallel (shunt) excited DC motor

POWER QUALITY MEASUREMENT PROCEDURE. Version 4 October Power-Quality-Oct-2009-Version-4.doc Page 1 / 12

Energy Converters. CAD and System Dynamics

5SJ4...-.HG Circuit Breakers to IEC and UL 489

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)

Synchronous Machines

Chapter 4. Synchronous Generators. Basic Topology

Investigation of fan vibration

EE2351 POWER SYSTEM ANALYSIS UNIT I: INTRODUCTION

Lesson 17: Synchronous Machines

Synchronous Machines

Fault Calculation Methods

The synchronous machine (detailed model)

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

TLF80511TF. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511TFV50 TLF80511TFV33. Rev. 1.

1 Unified Power Flow Controller (UPFC)

Low Drop Voltage Regulator TLE

Abstract The capability (P-Q) curve of generator can be determined only on the base of examinations in the power plant, i.e. on the base of: the no-lo

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

Electromagnetic Energy Conversion Exam 98-Elec-A6 Spring 2002

Final Exam, Second Semester: 2015/2016 Electrical Engineering Department

EDSA IEC 909 SHORT CIRCUIT ANALYSIS

Characteristics Climatic Category 40/85/56 (IEC 61071) Operating Temperature. 700 ~ 2000 VDC Capacitance Range 0,2 ~ 7,5 µf Capacitance Tolerance

Characteristics Climatic Category 40/105/56 (IEC 61071) Operating Temperature. 850 ~ 1200 VDC Capacitance Range 0,33 ~ 3,0 µf Capacitance Tolerance

Data Sheet, Rev. 1.1, February 2008 TLE4294GV50. Low Drop Out Voltage Regulator. Automotive Power

PRODUCT SPECIFICATIONS

Single Phase Motors Technical Datasheets

Low Drop Voltage Regulator TLE 4295

EE 451 Power System Stability

Recommended Land Pattern: [mm]

Generators for wind power conversion

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications FINALEXAMINATION. Session

A Comparative Analysis of Three Phase Induction Motor Performance Evaluation

6 Chapter 6 Testing and Evaluation

S P E C I F I C A T I O N S

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Chapter 9: Transient Stability

Preliminary Sizing Design of a 1 MW Low Duty Cycle Switched Reluctance Generator for Aerospace Applications

LO 1: Three Phase Circuits

MODULE TITLE : ELECTRICAL SUPPLY AND DISTRIBUTION SYSTEMS

Understanding the Inductances

< HIGH VOLTAGE DIODE MODULES > RM400DG-90F. APPLICATION Traction drives, High Reliability Converters / Inverters, DC choppers

Three Phase Circuits

CHAPTER 3 INFLUENCE OF STATOR SLOT-SHAPE ON THE ENERGY CONSERVATION ASSOCIATED WITH THE SUBMERSIBLE INDUCTION MOTORS

TLF80511EJ. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33. Rev. 1.

THREE PHASE CAPACITOR For WIND TURBINES

Characteristics Climatic Category 40/105/56 (IEC 61071)

DC/DC regulator Input V Output up to 16 A

Reference Only Spec. No. JEFL243B 0003F-01 P 1/ 6

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.).

TLE42344G. Data Sheet. Automotive Power. Low Dropout Linear Voltage Regulator. Rev. 1.0,

Recommended Hole Pattern: [mm]

PRODUCT SPECIFICATIONS

Power System Stability GENERATOR CONTROL AND PROTECTION

WCAP-FTXX Film Capacitors

TLE Data Sheet. Automotive Power. Low Dropout Fixed Voltage Regulator TLE42644G. Rev. 1.1,

Low Drop Voltage Regulator TLE 4296

Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko. FSD3020xxx-x_01-00

Characteristics Climatic Category 40/105/56 (IEC 61071)

ECE 585 Power System Stability

Transcription:

PROYECTO PROJECT CENTRAL TERMOELÉCTRICA ANDINA UNIDAD Nº 1 TÍTULO TITLE Technical Data and curves of the Generator Nº DE DOCUMENTO PROYECTO PROJECT DOCUMENT Nº CTA-12-MA EHP-SK-0086_Rev00 REV 00 FECHA DATE 01/02/08 EDITADO PARA ISSUED FOR approval 00/4 01/02/2008 Kaluza For approval / customer rev 00 = Siemens rev 4 Kaluza Ebert RE V FECHA DATE PREPARADO PREPARED DESCRIPCIÓN DESCRIPTION REVISADO CHECKED APROBADO APPROVED Nº SUBCONTRATISTA SUBCONTRACTOR Nº SUBCONTRATISTA SUBCONTRACTOR EDITADO ISSUED PARA INFORMACIÓN / FOR INFORMATION... PARA APROBACIÓN / FOR APPROVAL... PARA PETICIÓN OFERTA-COMPRA / FOR ASKING QUOTATION PURCHASING.. PARA CONSTRUCCIÓN / FOR CONSTRUCTION... SEGÚN LO CONSTRUIDO / AS- BUILT... OTROS / OTHERS... ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DE COBRA. THIS DOCUMENT CONTAINS PROPIETARY INFORMATION AND CAN NOT BE DUPLICATED, PROCESSED OR DISCLOSED TO THIRD PARTIES FOR ANY USE OTHER THAN THIS PROJECT AND THE PURPOSE FOR WHICH IT IS INTENDED FOR WITHOUT THE WRITTEN CONSENT OF COBRA

S for Steam- and Gas-Turbines from Erfurt Plant TECHNICAL DATA FOR GENERATOR OFFER Type: SGen5-100A-2P 115-36 FOR THE PROJECT S N = 206,30 MVA PF = 0,80 U N = 15,75 kv f N = 50 Hz Design corresponds to: I N = 7,56 ka n N = 3000 rpm IEC 34 CONTENT OF THIS FILE Datasheet: Electrical Data, Losses and Efficiencies 0 Reactive Capability Curve 1 No Load Saturation and Short-Circuit Characteristic 2 V-Curves at Rated Voltage 3 Unbalanced Load-Time-Curve 4 Mechanical Data Sheet 5 Efficiency vs. Power and Power Factor 7 Losses vs. Power and Power Factor 8 Armature Current and Field Voltage vs. Time 10 Limitation of Earth Fault Current vs. Time 11 Short Time Voltage/Frequency Capability 12 Mechanical Air Gap Moment in Case of 2 Poles Short Circuit 13 Short Circuit Currents and Time Constants 14 Short Circuit Decrement Curve - 3 poles Short Circuit 15 Short Circuit Decrement Curve - 2 poles Short Circuit 16 Short Circuit Decrement Curve - 1 pole Short Circuit to Earth 17 Vibration Limits 19 CTA-12-MA-EHP-SK-0086_00 The given data are calculated values (if not indicated differently) Die angegebene Werte sind Rechenwerte (wenn nicht anders bezeichnet) SIEMENS Kaluza Rev. 004 Power Generation (PG) - Erfurt Plant Revision 2.6.2 P251 G3 2008-02-08

Electrical Data, Losses and Efficiencies Generator Type: SGen5-100A-2P 115-36 Load Point N A Standard IEC 34 IEC 34 Thermal Classification: Design / Using F / B F / B Apparent Power MVA 206,3 194,1 Active Power MW 165,0 165,0 Cold Air Temperature C 43,0 43,0 Voltage kv 15,75 15,75 Voltage Deviation + - % 5,0 5,0 5,0 5,0 Armature Current ka 7,562 7,115 Frequency Speed Hz rpm 50 3000 50 3000 Power Factor - 0,80 0,85 Excitation No load I f0 U f0 A V 363 92 363 90 Requirements 4/4-load I fn U fn A V 1112 283 1028 256 5/4-load I f5/4 U f5/4 A V 1341 341 1232 307 Cooling Air Losses kw 2148 2035 Air flow Temp. rise m 3 /s K 50,0 41,1 50,0 39,0 Sudden-SCC I S : 3-phase (peak) ka 135 135 at No-Load and I K3 : 3-ph. (sustained at I fn ) ka 10,9 10,1 Nominal Voltage I K2 : 2-ph. (sustained at I fn ) ka 17,5 16,2 Short Circuit Ratio - 0,47 0,50 Reactances x" d unsat. sat. % % 19,1 14,3 17,9 13,5 x' d unsat. sat. % % 25,8 23,2 24,3 21,8 calculated values, x d unsat. sat. % % 246 213 232 200 tolerance +/-15% x'' q unsat. sat. % % 21,0 15,7 19,7 14,8 acc. IEC 60034-3 x' q unsat. sat. % % 50,1 45,3 46,0 41,6 x q unsat. sat. % % 234 199 220 187 x 2 unsat. sat. % % 20,0 15,0 18,8 14,1 x 0 unsat. % 10,1 9,5 x leak unsat. % 14,9 14,0 Time constants T'' d s 0,030 0,030 at 75 C T' d s 1,342 1,342 winding T' d0 s 13,680 13,680 temperature T'' d0 s 0,044 0,044 T a s 0,490 0,490 Resistance Stator winding / phase mω 0,96 0,96 at 20 C Rotor winding mω 195,51 195,51 Voltage PF = rated P.F. % 37,4 35,4 regulation PF = 1,00 % 30,9 29,6 Max. unbalanced Continuous % 10 10 load Short time i 2 2 * t s 10 10 Power at Underexcited Mvar 81,6 81,6 PF = 0 Overexcited Mvar 167,0 150,3 Winding temp. rise Stator (RTD) K C 60 103 56 99 Winding temp. Rotor (average) K C 54 97 47 90 Losses Bearing losses kw 110 110 Windage losses kw 817 817 Core losses kw 360 360 Short circuit losses kw 608 538 Rotor I 2 R losses kw 296 253 Total losses kw 2190 2077 Efficiencies with tolerance 4/4-load % 98,69 98,76 at static excitation 3/4-load % 98,55 98,60 and rated P.F. 2/4-load % 98,15 98,18 (incl. bearing losses) 1/4-load % 96,74 96,76

Reactive Capability Curve Load Point Rated A S N 206,30 MVA 194,10 MVA U N 15,75 kv 15,75 kv I N 7,562 ka 7,115 ka f N 50 Hz 50 Hz PF 0,80 0,85 T Cold 43,0 C 43,0 C Q/S 1,0 N 0,00 0,20 0,40 0,60 0,70 0,9 0,8 0,80 0,7 0,85 0,6 0,5 0,90 0,4 0,95 0,3 Underexcited Overexcited 0,2 0,1 0,0-0,1-0,2-0,3 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 0,975 1,00 0,975 0,95-0,4-0,5 0,00 0,20 0,40 0,60 0,70 0,80 0,85 0,90 P/S N

No Load Saturation and Short-Circuit Characteristic Generator - Typ: SGen5-100A-2P 115-36 S N = 206,30 MVA PF = 0,80 S(1,0) = 15,6 % U N = 15,75 kv SCR = 0,47 S(1,2) = 56,7 % I N = 7,562 ka I f0 = 363 A f N = 50 Hz I fn = 1112 A 2 U / U N I / I N 1,4 1,8 1,2 1,6 1,4 1 1,2 0,8 1 0,6 0,8 0,6 0,4 0,4 0,2 0,2 0 0 0 0,2 0,4 0,6 0,8 1 1,2 air-gap line no load saturation short circuit characteristic I F [ka]

V-Curves at Rated Voltage Generator - Typ: SGen5-100A-2P 115-36 S N = 206,30 MVA PF = 0,80 I f0 = 363 A U N = 15,75 kv f N = 50 Hz I fn = 1112 A I N = 7,562 ka T Cold Air = 43,0 C practical stability limit (rotor angle safety margin at 82 degrees) rated 1.00 -rated -0.00 1,10 1,00 0,90 0,80 0,70 0.00 0,60 0,50 heating limit of stator and rotor winding 4/4 3/4 2/4 1/4 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,10 I F / I FN 0,40 0,30 0,20 0,10 0,00 I / I N V-Curves Refer to Apparent Power

Unbalanced Load-Time-Curve Generator - Typ: SGen5-100A-2P 115-36 U N = 15,75 kv f N = 50 Hz i2² * t = 10 sec. 0,10 * i2 continuous 3 2 10 1 8 6 4 3 2 10 0 8 6 4 3 2 10-1 8 6 4 3 3 4 6 8 10 0 2 3 4 6 8 10 1 2 3 4 6 8 10 2 2 3 4 6 8 10 3 time t [s] negative sequence current i 2 [p.u.]

Mechanical Data Sheet U N = 15,75 kv f N = 50 Hz T Warm Air = 84,1 C P V, Cooler = 2148 kw Dimensions [mm]: L1 = 9900 H1 = 1700 Overall weight: 251000 kg L2 = 7750 H2 = 3900 Stator weight: 204700 kg L3 = 7300 H3 1) = Rotor weight: 46300 kg W1 = 4000 W2 = 1600 Rotor moment of inertia: 6900 kgm² L4 = 12700 H4 = 8100 Oil flow for both bearings: 280 l/min for rotor withdrawal crane hook height breakaway torque w. jacking oil: 273 Nm Preliminary values. breakaway torque w/o jacking oil: 22710 Nm Exact values are part of detail engineering. Thermal time constants [min]: Stator Winding: Rotor Winding: 19,9 min 7,7 min Estimation for required cooling water 2) flow (for TEWAC - cooling): T A(cooling air) - T W(cooling water) Standard water temperature rise Required cooling water flow 15 K 10 K 203 m³/hour 10 K 7 K 264 m³/hour 5 K 3,5 K 528 m³/hour 1) For cooler in top position. 2) Data are generated independent of cooling method; for DAC- or CACA-applications these data are not applicable.

Efficiency vs. Apparent Power and Power Factor U N = 15,75 kv f N = 50 Hz Efficiency acc. to: IEC 34 Apparent Power Output MVA 51,6 103,2 154,7 206,3 p.u. 0,25 0,50 0,75 1,00 Efficiency at P.F. = 1,00 % 97,42 98,56 98,89 99,00 Efficiency at nominal P.F. = 0,80 % 96,74 98,15 98,55 98,69 99,5 99,0 Generator Efficiency [%] 98,5 98,0 97,5 97,0 Power Factor = 1,0 Nominal Power Factor 96,5 0,25 0,50 0,75 1,00 Apparent Power Output / Rated Apparent Power Output [p.u.]

Total Losses vs. Apparent Power and Power Factor U N = 15,75 kv f N = 50 Hz Apparent Power Output MVA 51,6 103,2 154,7 206,3 p.u. 0,25 0,50 0,75 1,00 Losses at P.F. = 1,00 kw 1366 1507 1743 2074 Losses at nominal P.F. = 0,80 kw 1389 1555 1821 2190 2.500 2.000 Generator Losses [kw] 1.500 1.000 500 Power Factor = 1,0 Nominal Power Factor 0 0,25 0,50 0,75 1,00 Apparent Power Output / Rated Apparent Power Output [p.u.]

Stator Current and Field Voltage versus Time U N = 15,75 kv f N = 50 Hz I fn = 1112 A Time [s] 10 30 60 120 Stator Current I/I N [%] 226 154 130 116 Field Voltage U f /U fn [%] 208 146 125 112 Fullfills IEC and ANSI requirements Stator Current Field Voltage 250 250 Stator Current [%] 200 150 200 150 Field Voltage [%] 100 0 20 40 60 80 100 120 Time [s] 100 The generator is capable of operating at 130 percent of rated stator current for 1 min. The generator field winding is capable of operating at 125 percent of rated load field voltage for 1 min. Both requirements are fullfilled starting from stabilized temperatures at rated conditions. It is recognized that winding temperatures under these conditiones will exceed rated-load values. Number of such operations should be limited to two times a year (corresponds to ANSI and IEC).

Limitation of Earth Fault Current versus Time U N = 15,75 kv f N = 50 Hz 100 10A for 30s 10 Time [s] 1 0,1 0,01 0 100 200 300 400 500 600 I 0 [A] I 0 [A] Time [s] Ground fault current over neutral point to earth Limitation time for I 0 to prevent damage from stator iron core Diagram basis is I² * t = const.; 10 A for 30 s is Siemens standard for dimensioning earthing. When exceeding limitation curve, stator iron is endangered melting in the fault region. Worst case is earth fault on phase side (opposite to neutral point side) of winding. In that case the potential of neutral point changes from zero to phase-to-phase-voltage /. 3 Fault current and recommended trip time depend on earthing resistance.

Short Time Voltage/Frequency Capability U N = 15,75 kv f N = 50 Hz Continuous operation limits (S1) Voltage max.: +5,0 % 1) Frequency max.: +2,0 % Voltage min.: -5,0 % Frequency min.: -2,0 % 1) 1) In case of overvoltage and underfrequency at the same time the sum of both deviations for continuous operation is limited to: 5,0 % Minimum requirements IEC 34-3 Item 5 Voltage: +/- 5 % Frequency: +/- 2 % 10000 Permissible Duration Time [s] 1000 100 10 1 1,0 1,1 1,2 1,3 1,4 1,5 Volts per Hertz [p.u]

Mechanical Air Gap Moment in Case of 2 poles Short Circuit U N = 15,75 kv f N = 50 Hz Equation for the moment at 2-pole short circuit: M = M 1 *e -t/t1 sin ωt - M 2 *e -t/t2 sin 2ωt + M 3 *e -t/t3 M 1 = 4488 knm T 1 = 0,196 s M peak = 6528 knm M 2 = 2244 knm T 2 = 0,163 s M Nom. = 657 knm M 3 = 930 knm T 3 = 0,241 s Short Circuit Moment [knm] 7000 6500 6000 5500 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 0-5000,0-1000 0,1 0,2 0,3 0,4 0,5-1500 -2000-2500 -3000-3500 -4000-4500 -5000 Time [s] Values based on no load and nominal voltage

Short Circuit Currents and Time Constants U N = 15,75 kv f N = 50 Hz > Values based on 100% load and terminal voltage = 1,05 p.u. < Three Phase Short Circuit Asymmetrical Current (Peak) 1) I p = 153,7 ka Asymmetrical Current (RMS) I a = 104,6 ka Symmetrical Current (RMS) 2) I'' i = 60,4 ka DC Current I dc = 85,4 ka Sustained SC Current I s = 10,9 ka Armature Time Constant T a = 0,490 sec Transient Time Constant T' d = 1,492 sec Subtransient Time Constant T'' d = 0,027 sec Line To Line Asymmetrical Current (Peak) 1) I pl = 129,9 ka Asymmetrical Current (RMS) I al = 88,4 ka Symmetrical Current (RMS) 2) I'' il = 51,0 ka DC Current I dcl = 72,2 ka Sustained SC Current I sl = 17,6 ka Armature Time Constant T a = 0,490 sec Transient Time Constant T' dl = 2,295 sec Subtransient Time Constant T'' dl = 0,034 sec Line To Neutral Asymmetrical Current (Peak) 1) I pn = 171,8 ka Asymmetrical Current (RMS) I an = 116,9 ka Symmetrical Current (RMS) 2) I'' in = 67,5 ka DC Current I dcn = 95,5 ka Sustained SC Current I sn = 29,4 ka Armature Time Constant T an = 0,425 sec Transient Time Constant T' dn = 2,730 sec Subtransient Time Constant T'' dn = 0,036 sec 1) = 1,8*sqrt(2)*I k " 2) initial AC short circuit current (Anfangs-Kurzschlusswechselstrom I k ")

Calculated Three Phase Short Circuit Decrement Curves U N = 15,75 kv f N = 50 Hz 110 100 90 RMS ASYMMETRICAL CURRENT RMS SYMMETRICAL CURRENT DC COMPONENT 80 70 Current [ka] 60 50 40 30 20 10 SUSTAINED SC CURRENT 0 0,0 0,5 1,0 1,5 2,0 Time [s] > Values based on 100% load and terminal voltage = 1,05 p.u. <

Calculated Line-to-Line Short Circuit Decrement Curves U N = 15,75 kv f N = 50 Hz 100 90 80 RMS ASYMMETRICAL CURRENT RMS SYMMETRICAL CURRENT DC COMPONENT 70 60 Current [ka] 50 40 30 20 SUSTAINED SC CURRENT 10 0 0,0 0,5 1,0 1,5 2,0 Time [s] > Values based on 100% load and terminal voltage = 1,05 p.u. <

Calculated Line-to-Neutral Short Circuit Decrement Curves U N = 15,75 kv f N = 50 Hz 130 120 110 100 RMS ASYMMETRICAL CURRENT RMS SYMMETRICAL CURRENT DC COMPONENT 90 80 Current [ka] 70 60 50 40 30 SUSTAINED SC CURRENT 20 10 0 0,0 0,5 1,0 1,5 2,0 Time [s] > Values based on 100% load and terminal voltage = 1,05 p.u. <

S for Steam- and Gas-Turbines Information from Erfurt Manufacturing Plant Vibration Limits The vibration limits are kept to zone A of the ISO 7919 and ISO 10816 at generator construction and shaft alignment according to manual. For test field conditiones with temporary foundation Zone B can be used. When other (lower) limits specified - e.g. API - project-specific calculations are required. Shaft Vibration Limits - ISO 7919 - Peak-to-Peak-Values in µm Zone Speed Steam-Turbine Industrial Gas-Turbine Generator Application Generator rpm ISO 7919-2 ISO 7919-3 ISO7919-4 A 3600 75 80 80 3000 80 88 88 1800 90 113 113 1500 100 124 124 B 3600 150 240 150 220 150 220 Alarm 3000 165 260 164 241 164 241 C 1800 185 290 212 311 212 311 Trip 1500 200 320 232 341 232 341 Bearing Housing Vibration Limits - ISO 10816 - v eff in mm/s Zone Speed Steam-Turbine Industrial Gas-Turbine Generator Application Generator rpm ISO 10816-2 ISO 10816-3 ISO10816-4 A 3600 3,8 3,5 4,5 3000 3,8 3,5 4,5 1800 2,8 3,5 3,5 1500 2,8 3,5 3,5 B 3600 7,5 11,8 7,1 11 9,3 14,7 Alarm 3000 7,5 11,8 7,1 11 9,3 14,7 C 1800 5,3 8,5 7,1 11 7,1 11 Trip 1500 5,3 8,5 7,1 11 7,1 11 SIEMENS CTA-12-MA-EHP-SK-0086_00 Kaluza Rev. 004 Power Generation (PG) - Erfurt Plant P251 G3 2008-02-08