Mextram 504. Jeroen Paasschens Willy Kloosterman Philips Research Laboratories, Eindhoven. c Philips Electronics N.V. 1999

Similar documents
MEXTRAM (level 504) the Philips model for bipolar transistors

BIPOLAR JUNCTION TRANSISTOR MODELING

Junction Bipolar Transistor. Characteristics Models Datasheet

A Novel Method for Transit Time Parameter Extraction. Taking into Account the Coupling Between DC and AC Characteristics

2SC4203 2SC4203. Video Output for High Definition VDT High Speed Switching Applications. Maximum Ratings (Ta = 25 C)

The Mextram Bipolar Transistor Model

University of Pittsburgh

Silicon Diffused Power Transistor

Digital Integrated CircuitDesign

Engineering 1620 Spring 2011 Answers to Homework # 4 Biasing and Small Signal Properties

The Mextram Bipolar Transistor Model

Tutorial #4: Bias Point Analysis in Multisim

Model derivation of Mextram 504

MP6901 MP6901. High Power Switching Applications. Hammer Drive, Pulse Motor Drive and Inductive Load Switching. Maximum Ratings (Ta = 25 C)

2SC3074 2SC3074. High Current Switching Applications. Maximum Ratings (Ta = 25 C)

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

ECE 304: Bipolar Capacitances E B C. r b β I b r O

Regional Approach Methods for SiGe HBT compact modeling

figure shows a pnp transistor biased to operate in the active mode

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

Transistor Characteristics and A simple BJT Current Mirror

EE105 - Fall 2006 Microelectronic Devices and Circuits

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Bipolar junction transistor operation and modeling

Phototransistor. Industry Standard Single Channel 6 Pin DIP Optocoupler

Chapter 5. BJT AC Analysis

The Common-Emitter Amplifier

Lecture 38 - Bipolar Junction Transistor (cont.) May 9, 2007

2SC5748 2SC5748. Horizontal Deflection Output for HDTV&Digital TV. Maximum Ratings (Tc 25 C) Electrical Characteristics (Tc 25 C)

A new transit time extraction algorithm based on matrix deembedding techniques

About Modeling the Reverse Early Effect in HICUM Level 0

Bipolar Junction Transistor (BJT) - Introduction

PN2222A TO - 92 BIPOLAR TRANSISTORS TRANSISTOR(NPN) (TO-92) FEATURES

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

Linear Phase-Noise Model

Modeling of Devices for Power Amplifier Applications

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

Silicon Diffused Power Transistor

VBIC. SPICE Gummel-Poon. (Bipolar Junction Transistor, BJT) Gummel Poon. BJT (parasitic transistor) (avalance mutliplication) (self-heating)

2 nd International HICUM user s meeting

CHAPTER.4: Transistor at low frequencies

Prof. Paolo Colantonio a.a

KDG25R12KE3. Symbol Description Value Units V CES Collector-Emitter Blocking Voltage 1200 V V GES Gate-Emitter Voltage ±20 V

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

) unless otherwise specified Symbol Description Values Units

Chapter 2. - DC Biasing - BJTs

The Devices. Jan M. Rabaey

Lecture 7: Transistors and Amplifiers

Chapter 13 Small-Signal Modeling and Linear Amplification

MICROELECTRONIC CIRCUIT DESIGN Second Edition

Charge-storage related parameter calculation for Si and SiGe bipolar transistors from device simulation

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Methodology for Bipolar Model Parameter Extraction. Tzung-Yin Lee and Michael Schröter February 5, TYL/MS 2/5/99, Page 1/34

EECS 105: FALL 06 FINAL

2N4401 TO - 92 BIPOLAR TRANSISTORS TRANSISTOR(NPN) (TO-92) FEATURES

Status of HICUM/L2 Model

BCR191.../SEMB1 BCR191/F/L3 BCR191T/W BCR191S SEMB1. Type Marking Pin Configuration Package BCR191 BCR191F BCR191L3 2=E 2=E 2=E =C 3=C 3=C

Homework Assignment 08

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

GSID075A060B1A4. Preliminary Data Sheet GSID075A060B1A4. IGBT Module. Features: Application:

IXGL75N250 = 2500V I C90. High Voltage IGBT V CES. = 65A V CE(sat) 2.9V. Preliminary Technical Information. For Capacitor Discharge.

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

Section 1: Common Emitter CE Amplifier Design

Block Diagram 1 REG. VCC 2 Hall Plate Amp B 3 GND 4 Pin Assignment 277 (276) Front View 1 : VCC 2 : 3 : B :GND Name P/I/O Pin # Desc

Chapter 2 - DC Biasing - BJTs

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Spectral Analysis of Noise in Switching LC-Oscillators

CM300DY-24A. APPLICATION AC drive inverters & Servo controls, etc CM300DY-24A. IC...300A VCES V Insulated Type 2-elements in a pack

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)

ECE-305: Spring 2018 Final Exam Review

GSID300A120S5C1 6-Pack IGBT Module

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

Circle the one best answer for each question. Five points per question.

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Silicon Diffused Darlington Power Transistor

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

EE105 Fall 2014 Microelectronic Devices and Circuits

B C E. absolute maximum ratings at 25 C ambient temperature (unless otherwise noted )

Forward-Active Terminal Currents

55:041 Electronic Circuits The University of Iowa Fall Exam 2

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model

BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS

CM400DY-24A. APPLICATION AC drive inverters & Servo controls, etc CM400DY-24A. IC...400A VCES V Insulated Type 2-elements in a pack

TCAD setup for an advanced SiGe HBT technology applied to the HS, MV and HV transistor versions

BJT Biasing Cont. & Small Signal Model

The BJT Differential Amplifier. Basic Circuit. DC Solution

Consider the circuit below. We have seen this one already. As before, assume that the BJT is on and in forward active operation.

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

SOME USEFUL NETWORK THEOREMS

DATA SHEET. BC556; BC557 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Mar 27.

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models

Mod. Sim. Dyn. Sys. Amplifiers page 1

DATA SHEET. BFQ225 NPN video transistor DISCRETE SEMICONDUCTORS Sep 04

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

Transcription:

Mextram 54 Jeroen Paasschens Willy Kloosterman Laboratories, Eindhoven c Electronics N.V. 1999 Mextram 54

Introduction (1) Previous CMC: Mextram 53 gives generally good results. Why Mextram 54 Modelling of SiGe processes Easier and hence better parameter extraction Better monotony in (higher) derivatives. We have tested Mextram 54 on five CMC data sets New parameter extraction only for process A

Process A: Cap Temp=25, 125 Mextram 53.2 (2) 12 Cbe 12 Cbc 5 Ccs 1 1 4 Cbe [ff] 8 6 Cbc [ff] 8 6 Ccs [ff] 3 2 4 4 1 2 4 3 2 1 1 2 13 11 9 7 5 3 1 1 Vbc[V] 13 11 9 7 5 3 1 1 Vcs[V] 1 Cbe_ 1 Cbc_ 4 Ccs_ 9 9 38 Cbe_[fF] 8 7 Cbc_[fF] 8 7 Ccs_[fF] 36 34 6 6 32 5 25 5 75 1 125 15 Temp[C] 5 25 5 75 1 125 15 Temp[C] 3 25 5 75 1 125 15 Temp[C]

Process A: fgummel Vbc= Temp=25, 5, 75, 125, 15 Mextram 53.2 (3) 1 1 Ic Ib Is 1 2 1 3 1 3 1 3 1 4 1 4 1 4 1 5 1 5 Ic [A] 1 5 1 6 Ib [A] 1 6 1 7 Is [A] 1 6 1 7 1 7 1 8 1 8 1 8 1 9.2.4.6.8 1. 1.2 1 9 1 1.2.4.6.8 1. 1.2 1 9 1 1.2.4.6.8 1. 1.2 Ic/Ib[ ] 2 175 15 125 1 75 5 Ie/Ib 25.2.4.6.8 1. 1.2 dic/dvbe/ic [1/V] 5 4 3 2 1 (dic/dvbe)/ic.2.4.6.8 1. 1.2 (dib/dvbe)/ib [1/V] 5 4 3 2 1 (dib/dvbe)/ib.2.4.6.8 1. 1.2

Process A: rgummel Vbe= Temp=25, 5, 75, 125, 15 Mextram 53.2 (4) 1 1 Ie Ib Is 1 2 1 3 1 3 1 3 1 4 1 4 1 4 1 5 1 5 Ie [A] 1 5 1 6 Ib [A] 1 6 1 7 Is [A] 1 6 1 7 1 7 1 8 1 8 1 8 1 9.2.4.6.8 1. 1.2 Vbc[V] 1 9 1 1.2.4.6.8 1. 1.2 Vbc[V] 1 9 1 1.2.4.6.8 1. 1.2 Vbc[V] Ie/Ib[ ] Ie/Ib 1..9.8.7.6.5.4.3.2.1..2.4.6.8 1. 1.2 Vbc[V] Ie/(Ib+Is) [ ] Ie/(Ib+Is) 1 9 8 7 6 5 4 3 2 1.2.4.6.8 1. 1.2 Vbc[V] (die/dvbc)/ie [1/V] 5 4 3 2 1 (die/dvbc)/ie.2.4.6.8 1. 1.2 Vbc[V]

Process A: foutput-ib Temp=25 Ib=1, 2, 3, 4 ua Mextram 53.2 (5) 3 Ic Is 1.1 Vbe 25 1 4 1.5 Ic [ma] 2 15 1 Is [A] 1 5 1 6 1 7 1 8 Vbe [V] 1..95.9 5 1 9.85 1 2 3 4 5 6 7 8 Vce[V] 1 1..5 1. 1.5 2. Vce[V].8 1 2 3 4 5 6 7 8 Vce[V] 15 Ic/Ib 1 1 dic/dvce 5 Ic/(dIc/dVce) 125 4 Ic/Ib[ ] 1 75 5 g_out [mho] 1 2 1 3 Vef [V] 3 2 25 1 1 2 3 4 5 6 7 8 Vce[V] 1 4 1 2 3 4 5 6 7 8 Vce[V] 1 2 3 4 5 6 7 8 Vce [V]

Process A: Temp=25 f=1 GHz, Vce =.2,.5,.8, 2, 5 V Mextram 53.2 (6) 25 Hfe=Ic/Ib 1 R_bb 2 8 15 6 Ic/Ib 1 Rb 4 5 2 1 5 1 4 1 3 1 2 1 1 Ic[A] 1 5 1 4 1 3 1 2 1 1 Ic[A] 1 1 1 ft 1 11 F_uni 8 1 9 ft[hz] 6 1 9 4 1 9 F_uni[Hz] 1 1 1 9 2 1 9 1 1 5 1 4 1 3 1 2 1 1 Ic[A] 1 8 1 5 1 4 1 3 1 2 1 1 Ic[A]

Outline (7) Introduction and previous Mextram 53 results Reformulation of the epilayer model Results Conclusions

f T -example (8) Process A Single Poly BiCMOS process V CE =.2,.5,.8, 2., 5. 1 1 1 Emitter size: :6 5:4 m Double base contact: r p = 1 k Maximum cut off f frequency T T : 1 GHz @ V CE = 5 V f f T : 6 GHz @ V CE = :5 V ft [Hz] 8 1 9 6 1 9 4 1 9 2 1 9 1 1 4 1 3 1 2 Ic[A]

sb 2 s C 2 s E 1 Internal base-collector bias (9) The internal base-collector bias increases strongly due to the (variable) epilayer resistance. When V B2 C 2 > V dc the junction is open. The bias increases only slightly. This happens quite abrupt. dpoly1, Vcb = 1, 3, 5 s C 1 1 R Cv V_b2c2-1 -2 A A A -3-4 A AA -5.5.1.15.2 Ic

Basics of the epilayer model (1) i When there is no injection into the epilayer: ( Wepi x = ) V epi V = B2 C, V 2 B2 C 1 and I = V epi SCR Cv V epi + I hc SCR Cv V epi + I hc R Cv Iepi.1.8.6.4 Current in the epilayer I_epi Limits Ihc.2 2 4 6 8 Vepi

Basics of the epilayer model (11) Vce = 5V;,Vbe =.87,.88,.9V; Ic =.32,.44,.74 ma 21 i In case of injection ( Wepi x > ) 2 V epi ' V dc, V B2 C 1 log(concentration (cm^-3)) 19 18 17 16 Injection thickness is given by (Kull model) 15 x i Wepi B 2 C ) f (, V 2 B2 ) C 1 R f ( V = C 2 C 1 Cv I 14..1.2.3.4.5.6.7 Distance (Microns) I C 1 C 2 = V epi SCR Cv (1, x i Wepi )2 V epi I + hc SCR Cv, x i (1 Wepi )2 V epi I + hc R Cv, x i (1 Wepi )

Mextram 53 (12) Voltages V B2 C 2 and V B2 C 1 are given. Combine the equations to find a third order equation for I C 1 C 2..1 Current in the epilayer From V B2 C 2 calculate.8.6 Reverse current I r Iepi.4 Reverse base charge Q BC.2 I_(xi=) Limits Ihc Iepi -3-2 -1 Vb2c2 1 2 3 Epilayer charge Q epi (from charge control relation) Uses also V B2 C 1 and I C 1 C 2 )

Mextram 54 concept (13) Injection starts when V B2 C 2 ' V dc :.4.35 Ic Iqs Cbimos3, Ib = 25u, 5u, 1u, 2u V qs V dc, V B2 C 1.3.25 I qs qs SCR V V qs + I hc SCR Cv Cv V qs + I hc R Cv Ic, Iqs.2.15.1.5 5 1 15 Vce Example without velocity saturation

Basics of the epilayer model (recap) (14) Vce = 5V;,Vbe =.87,.88,.9V; Ic =.32,.44,.74 ma 21 i In case of injection ( Wepi x > ) 2 V epi ' V dc, V B2 C 1 log(concentration (cm^-3)) 19 18 17 16 Injection thickness is given by (Kull model) 15 x i Wepi B 2 C ) f (, V 2 B2 ) C 1 R f ( V = C 2 C 1 Cv I 14..1.2.3.4.5.6.7 Distance (Microns) I C 1 C 2 = V epi SCR Cv (1, x i Wepi )2 V epi I + hc SCR Cv, x i (1 Wepi )2 V epi I + hc R Cv, x i (1 Wepi )

Mextram 54 (15) calculate from and i x Wepi 2 B V C1 2 C 1 (third order C I equation) x i Wepi =, I qs 1 C 1 C 2 I no velocity saturation x_i / Wepi Injection thickness.7 53 54.6 No velocity saturation.5.4.3.2 Velocity saturation 1, I qs C 1 C 2 I velocity saturation.1 1 Iepi / Iqs 2 3

Mextram 54 (16) Calculate V B 2 C 2 from the equation for x i Wepi (Kull model approximated): x i Wepi ( B f ), V f ( V 2 C 2 B2 C ) 1 R 2 C C 1 Cv I = From V B 2 C 2 calculate Reverse current I r Reverse base charge Q BC Epilayer charge Q epi This describes also charge in Ic, Ib, x_i / Wepi 1.1.1 1e-6 1e-8 1e-1 axi=.1 axi=.3 53 Gummelplot, cbimos3 hard saturation (I C 1 C 2 ' ) 1e-12.4.6.8 1 1.2 Vbe

Current definition (17) Question: How do we find I C 1 C 2? Use the epilayer resistance as a current sensor. Node voltage V B2 C 2 is only used to define the current: C s 1 R Cv s C 2 B 2 C 2 f V ), f ( V 2 B2 C ) + V 1 C1 C 2 I ( 1 C R Cv (Kull model; also = C used in reverse) sb 2 A A A A AA =) V B2 C 2 is always reasonably physical. s E 1

Process A: h fe (18) 2 15 Vce =.2,.6,.9, 1.5, 3. 53 54 hfe 1 5 1 4 1 3 1 2 Ic[A]

Current and derivatives (19).3.25 Cbimos3, Vce=.8 53 54 1.9.8 Cbimos3, Vce=.8 53 54 Ic.2.15.1 d^2ic/dvbe^2.7.6.5.4.3.2.5.1.7.8.9 1 1.1 Cbimos3, Vbe Vce=.8.14 53 54.12 -.1.7.8.9 1 1.1 Cbimos3, Vbe Vce=.8 15 53 1 54 5.1 dic/dvbe.8.6.4 d^2ic/dvbe^2-5 -1-15 -2-25.2-3 -35.7.8.9 1 1.1 Vbe -4.7.8.9 1 1.1 Vbe

Process A: fgummel Vbc= Temp=25,5,75 Mextram 54 (2).2 dic/dvbe 1. d2ic/dvbe 15 d3ic/dvbe dic/dvbe [A/V].15.1.5 d2ic/dvbe [A/V^2].5..5 d3ic/dvbe[a/v^3] 1 5 5 1..3.5.7.9 1.1 1.3 1..3.5.7.9 1.1 1.3 15.3.5.7.9 1.1 1.3 2 dib/dvbe 1 d2ib/dvbe.5 d3ib/dvbe dib/dvbe[ma/v] 15 1 5 d2ib/dvbe [ma/v^2] 8 6 4 2 d3ib/dvbe [A/V^3].3.1.1.3.3.5.7.9 1.1 1.3.3.5.7.9 1.1 1.3.5.3.5.7.9 1.1 1.3

Process C: fgummel Vbc= Temp=25, 75, 125 Mextram 54 (21) dic/dvbe [A/V].5.4.3.2.1 dic/dvbe..4.6.8 1. 1.2 d2ic/dvbe [A/V^2].4.3.2.1. d2ic/dvbe.1.4.6.8 1. 1.2 d3ic/dvbe[a/v^3] d3ic/dvbe 5 4 3 2 1 1 2 3 4 5.4.6.8 1. 1.2 2. dib/dvbe 2 d2ib/dvbe 3 25 d3ib/dvbe dib/dvbe[ma/v] 1.5 1..5..4.6.8 1. 1.2 d2ib/dvbe [ma/v^2] 15 1 5.4.6.8 1. 1.2 d3ib/dvbe [ma/v^3] 2 15 1 5 5 1.4.6.8 1. 1.2

Output characteristics (22).2.18 Cbimos3, ib = 25u, 5u, 1u, 2u 53 54.1 Cbimos3, ib = 25u, 5u, 1u, 2u 53 54.16.14.12.1 Ic.1 gout.8.6.1.4.2 2 4 6 8 1 Vce 1e-5 2 4 6 8 1 Vce

Process A: foutput-ib Temp=25 Ib=1, 2, 3, 4 ua Mextram 53.2 (23) 3 Ic Is 1.1 Vbe 25 1 4 1.5 Ic [ma] 2 15 1 Is [A] 1 5 1 6 1 7 1 8 Vbe [V] 1..95.9 5 1 9.85 1 2 3 4 5 6 7 8 Vce[V] 1 1..5 1. 1.5 2. Vce[V].8 1 2 3 4 5 6 7 8 Vce[V] 15 Ic/Ib 1 1 dic/dvce 5 Ic/(dIc/dVce) 125 4 Ic/Ib[ ] 1 75 5 g_out [mho] 1 2 1 3 Vef [V] 3 2 25 1 1 2 3 4 5 6 7 8 Vce[V] 1 4 1 2 3 4 5 6 7 8 Vce[V] 1 2 3 4 5 6 7 8 Vce [V]

Process A: foutput-ib Temp=25 Ib=1, 2, 3, 4 ua Mextram 54 (24) 3 Ic Is 1.1 Vbe Ic [ma] 25 2 15 1 5 Is [A] 1 4 1 5 1 6 1 7 1 8 1 9 Vbe [V] 1..9.8.7 1 2 3 4 5 6 7 8 Vce[V] 1 1..5 1. 1.5 2. Vce[V].6 1 2 3 4 5 6 7 8 Vce[V] 15 Ic/Ib 1 1 dic/dvce 5 Vef 125 4 Ic/Ib[ ] 1 75 5 dic/dvce [A/V] 1 2 1 3 Vef [V] 3 2 25 1 1 2 3 4 5 6 7 8 Vce[V] 1 4 1 2 3 4 5 6 7 8 Vce [V] 1 2 3 4 5 6 7 8 Vce [V]

One new parameter (25) Basically we only need one new parameter: a xi 9e+9 8e+9 Cbimos3, Vce =.8, 2. Mextram 54 axi =.3 axi =.3 axi = 1. 7e+9 6e+9 ft 5e+9 4e+9 3e+9 2e+9 1e+9.8.9 1 Vbe We also add the transit time parameters B, epi, and R. (In Mextram 53 these are calculated from DC parameters)

Process A: f T, V ce = :2,.5,.8, 2., 5. (26) Mextram 53 Mextram 54 1 1 1 1 1 1 8 1 9 8 1 9 ft [Hz] 6 1 9 4 1 9 ft [Hz] 6 1 9 4 1 9 2 1 9 2 1 9 1 1 4 1 3 1 2 Ic[A] 1 1 4 1 3 1 2 Ic[A]

Conclusions (27) Mextram 54 has much smoother characteristics Better description of measurements, improved parameter extraction features must still be demonstrated. SiGe modelling: Mextram 53 results are reasonable. Physical description and geometric scaling better with Mextram 54 Not enough experience (yet) with SiGe (e.g. not tested in production) Mextram 54 will contain self-heating network Mextram 54 model equations are ready except for details Further testing mainly within