Binary Transmissions over Additive Gaussian Noise: A Closed-Form Expression for the Channel Capacity 1

Similar documents
A t super-channel. trellis code and the channel. inner X t. Y t. S t-1. S t. S t+1. stages into. group two. one stage P 12 / 0,-2 P 21 / 0,2

Revision of Lecture 5

Computation of Information Rates from Finite-State Source/Channel Models

Discrete Memoryless Channels with Memoryless Output Sequences

Constellation Shaping for Communication Channels with Quantized Outputs

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information

Upper Bounds on the Capacity of Binary Intermittent Communication

The Capacity of Finite Abelian Group Codes Over Symmetric Memoryless Channels Giacomo Como and Fabio Fagnani

The Poisson Channel with Side Information

NUMERICAL COMPUTATION OF THE CAPACITY OF CONTINUOUS MEMORYLESS CHANNELS

On the Low-SNR Capacity of Phase-Shift Keying with Hard-Decision Detection

Shannon meets Wiener II: On MMSE estimation in successive decoding schemes

Optimal Power Control for LDPC Codes in Block-Fading Channels

EE229B - Final Project. Capacity-Approaching Low-Density Parity-Check Codes

MMSE DECODING FOR ANALOG JOINT SOURCE CHANNEL CODING USING MONTE CARLO IMPORTANCE SAMPLING

The Effect of Memory Order on the Capacity of Finite-State Markov and Flat-Fading Channels

Variable Length Codes for Degraded Broadcast Channels

Principles of Coded Modulation. Georg Böcherer

ECE Information theory Final (Fall 2008)

Communication Theory II

One Lesson of Information Theory

Optimal Power Control in Decentralized Gaussian Multiple Access Channels

WE study the capacity of peak-power limited, single-antenna,

Capacity of Memoryless Channels and Block-Fading Channels With Designable Cardinality-Constrained Channel State Feedback

Turbo Codes for Deep-Space Communications

Low Density Lattice Codes

Dispersion of the Gilbert-Elliott Channel

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels

Power Allocation and Coverage for a Relay-Assisted Downlink with Voice Users

On the Distribution of Mutual Information

On Generalized EXIT Charts of LDPC Code Ensembles over Binary-Input Output-Symmetric Memoryless Channels

On the Capacity of Free-Space Optical Intensity Channels

Supplementary Figure 1: Scheme of the RFT. (a) At first, we separate two quadratures of the field (denoted by and ); (b) then, each quadrature

Performance of Multi Binary Turbo-Codes on Nakagami Flat Fading Channels

On the Capacity of the Two-Hop Half-Duplex Relay Channel

Block 2: Introduction to Information Theory

Vector Channel Capacity with Quantized Feedback

Low-density parity-check codes

On the Shamai-Laroia Approximation for the Information Rate of the ISI Channel

Bounded Expected Delay in Arithmetic Coding

Capacity and Reliability Function for Small Peak Signal Constraints

Low Density Parity Check (LDPC) Codes and the Need for Stronger ECC. August 2011 Ravi Motwani, Zion Kwok, Scott Nelson

Lecture 14 February 28

Channel Dependent Adaptive Modulation and Coding Without Channel State Information at the Transmitter

Approaching Blokh-Zyablov Error Exponent with Linear-Time Encodable/Decodable Codes

Aalborg Universitet. Bounds on information combining for parity-check equations Land, Ingmar Rüdiger; Hoeher, A.; Huber, Johannes

Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR

Principles of Communications

The Fading Number of a Multiple-Access Rician Fading Channel

On Gaussian MIMO Broadcast Channels with Common and Private Messages

ELEC546 Review of Information Theory

Wideband Fading Channel Capacity with Training and Partial Feedback

Channel capacity. Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5.

EE 4TM4: Digital Communications II Scalar Gaussian Channel

Chapter 9 Fundamental Limits in Information Theory

Capacity of the Discrete-Time AWGN Channel Under Output Quantization

New Puncturing Pattern for Bad Interleavers in Turbo-Codes

Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes

Bounds on Achievable Rates of LDPC Codes Used Over the Binary Erasure Channel

arxiv:cs/ v2 [cs.it] 1 Oct 2006

LOW-density parity-check (LDPC) codes were invented

MODULATION AND CODING FOR QUANTIZED CHANNELS. Xiaoying Shao and Harm S. Cronie

Evaluate the Word Error Rate of Binary Block Codes with Square Radius Probability Density Function

A General Formula for Compound Channel Capacity

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University

A NEW CHANNEL CODING TECHNIQUE TO APPROACH THE CHANNEL CAPACITY

3F1: Signals and Systems INFORMATION THEORY Examples Paper Solutions

New Designs for Bit-Interleaved Coded Modulation with Hard-Decision Feedback Iterative Decoding

Lecture 2. Capacity of the Gaussian channel

The Capacity of the Semi-Deterministic Cognitive Interference Channel and its Application to Constant Gap Results for the Gaussian Channel

Lecture 5 Channel Coding over Continuous Channels

On the minimum distance of LDPC codes based on repetition codes and permutation matrices 1

(Classical) Information Theory III: Noisy channel coding

Lecture 4. Capacity of Fading Channels

Lecture 8: Shannon s Noise Models

An Achievable Error Exponent for the Mismatched Multiple-Access Channel

On the Duality between Multiple-Access Codes and Computation Codes

Cooperative Communication with Feedback via Stochastic Approximation

On Capacity Under Received-Signal Constraints

ECE Information theory Final

An Outer Bound for the Gaussian. Interference channel with a relay.

Efficient Computation of EXIT Functions for Non-Binary Iterative Decoding

Energy State Amplification in an Energy Harvesting Communication System

THE EFFECT OF PUNCTURING ON THE CONVOLUTIONAL TURBO-CODES PERFORMANCES

The Worst Additive Noise Under a Covariance Constraint

Threshold Optimization for Capacity-Achieving Discrete Input One-Bit Output Quantization

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT V PART-A. 1. What is binary symmetric channel (AUC DEC 2006)

Cut-Set Bound and Dependence Balance Bound

Secret Key and Private Key Constructions for Simple Multiterminal Source Models

Convexity/Concavity of Renyi Entropy and α-mutual Information

The PPM Poisson Channel: Finite-Length Bounds and Code Design

Capacity Bounds for Power- and Band-Limited Wireless Infrared Channels Corrupted by Gaussian Noise

Lecture 8: Channel Capacity, Continuous Random Variables

Successive Cancellation Decoding of Single Parity-Check Product Codes

Single-Gaussian Messages and Noise Thresholds for Low-Density Lattice Codes

On the Typicality of the Linear Code Among the LDPC Coset Code Ensemble

INFORMATION PROCESSING ABILITY OF BINARY DETECTORS AND BLOCK DECODERS. Michael A. Lexa and Don H. Johnson

16.36 Communication Systems Engineering

Decoupling of CDMA Multiuser Detection via the Replica Method

An Alternative Proof for the Capacity Region of the Degraded Gaussian MIMO Broadcast Channel

Transcription:

5 Conference on Information Sciences and Systems, The Johns Hopkins University, March 6 8, 5 inary Transmissions over Additive Gaussian Noise: A Closed-Form Expression for the Channel Capacity Ahmed O. Nasif and George N. Karystinos Department of Electrical Engineering 3 Russ Engineering Center Wright State University Dayton, OH 45435 USA e-mail: nasif.@wright.edu, g.karystinos@wright.edu Abstract We derive a closed-form expression for the capacity of the additive-gaussian-noise memoryless channel with binary input. The capacity expression that we obtain contains an infinite series. Truncation of the series -for computation reasons- at an odd or even number of terms results in a lower or upper, respectively, bound on the channel capacity; we prove that the tightness of the bound increases monotonically with the number of terms that are included in the truncated series. Numerical results confirm that, as long as at least the first six terms of the series are calculated, the corresponding lower or upper bound becomes indistinguishable from the exact channel capacity. Therefore, with small computational complexity we obtain accurately the capacity of the Gaussian channel with binary input. Index Terms Channel capacity, decoding, discreteinput channels, encoding, information rates, Gaussian channels, Gaussian noise. I. Introduction The quality of a communication system is measured by the information transmission rate from the source to the destination. The overall transmission rate is determined by several external (e.g. physical medium, propagation environment) and design (e.g. compression, modulation) factors. In digital communication systems, such a design factor is the selection of the channel coding/decoding scheme that ensures communication with small probability of error between the source and the destination. Provided that the probability of error can be made arbitrarily small, the information transmission rate of a digital communication system is proportional to the channel coding rate, hence the latter should be selected as high as possible subject to the arbitrarily-small-error-probability constraint. The imum possible coding rate for reliable communication 3 depends on the transmitter, communication channel, and receiver characteristics and is called the channel capacity. If the channel is memoryless, then its capacity is equal to the imum mutual information between the coded input and output of the channel []. The imization is per- This work was supported in part by the Ohio oard of Regents under a Research Challenge Grant. Corresponding author. 3 y reliable communication we refer to the ability to transmit information over a channel with as small error probability as desired. formed over all possible coded input probability density functions (pdf s) allowed by the encoder. Therefore, the channel capacity depends strictly on the (i) physical channel characteristics and (ii) transmitter (in fact, channel coder) specifics. We note that the channel input distribution is defined over the allowable input alphabet. Along these lines, the channel capacity of several input-alphabet/physical-channel pairs has been evaluated in the past. Primary examples are the binary symmetric channel, discrete memoryless channel, and Gaussian channel []. The latter is perhaps the most popular model; the input alphabet -usually with an average input power constraint enforced- is the entire real (or complex) field and Gaussian noise is added during transmission. The Gaussian channel is a practical model for many real channels, including radio and satellite links, because it represents the cumulative effect of a large number of small random effects in a communication system []. In practice, the capacity of the Gaussian channel is usually viewed as a benchmark of the quality of a communication system. Although the capacity of the Gaussian channel is indeed a tight upper bound on the rate of any possible coding scheme, this bound becomes loose when the coded input alphabet is restricted to a proper subset of the real field. In fact, most of the coding methods that have been proposed until today produce binary coded symbols suitable for transmission with conventional modulation schemes. Hence, the capacity of the additive-gaussian-noise (AGN) channel with binary input becomes a particularly important metric on the performance of practical communication systems. y definition, the binary-input AGN channel capacity is given in the form of an integral []. Therefore, the capacity curve can be obtained by common numerical integration methods. Such methods have been used in [3]-[7] to produce the curve. In particular, Monte-Carlo based techniques are utilized in [3] and [7] for the evaluation of the channel capacity integral. However, due to the significance of the binary-input AGN channel capacity, more advanced numerical techniques tailored to the problem under consideration have appeared in the literature. Prime examples include numerical algorithms for the calculation of the capacity developed in [8]-[]. On the other hand, in an attempt to obtain a closed-form expression for the capacity, new capacity formulas have been derived in [], [3]. Although these formulas are significantly different than the original capacity definition [], they still contain an integral which is to be numerically evaluated. Therefore, the capacity curves presented in [], [3] can only be obtained by numerical integration. As a result, the problem of obtaining a closed-form expression for the binary-input AGN channel capacity has often been reported as open in past literature (see

for example [7], [9], [], [4]). In this present work, we consider exactly the above problem and obtain the channel capacity for binary transmissions over additive Gaussian noise in a closed-form expression. As a side result, we prove that this imum rate is achieved when the binary input distribution is uniform. As expected, the channel capacity is a monotonically increasing function of the constraint on the input power-to-noise-variance-ratio, usually referred to as input signal-to-noise-ratio (SNR). At the absence of any input SNR constraint (or, equivalently, when the constraint becomes infinite) the channel capacity becomes equal to, in contrast to the Gaussian channel with real/complex-valued inputs for which it becomes arbitrarily large (infinite). We note that this new capacity expression represents the imum rate of coding schemes of practical interest for reliable communication. In other words, it indicates the error-free performance limit for common coding techniques, like Turbo [5] or LDPC [6] codes, etc. The capacity expression that we obtain consists of an infinite series. Of course, computation limitations might impose restrictions on the number of terms that are included in the calculation of the capacity. We prove that when the infinite series is truncated at an odd number of terms it represents a lower bound on the capacity. Similarly, when it is truncated at an even number it becomes an upper bound. oth bounds become tighter as the number of summation terms increases. Therefore, for a large enough number of terms, the two bounds actually serve as accurate approximations/evaluations of the exact capacity. The rest of this paper is organized as follows. In Section II we evaluate the exact channel capacity for binary transmissions over additive Gaussian noise. Lower and upper bounds on the capacity are obtained in Section III through appropriate truncation of the infinite series. II. inary Transmissions Over Additive Gaussian Noise: The Exact Channel Capacity Let us denote by the random variables X and Y the coded input and output, respectively, of a discrete-time memoryless communication channel. The capacity of such a channel is given by C {I(X;Y )} () f X F where I(X; Y ) is the mutual information between X and Y, f X denotes the pdf of the input random variable X, and F is the set of allowable input pdf s. In general, the channel capacity C depends on the set of allowable input pdf s F as well as the relation that characterizes the connection between the input X and output Y expressed by the conditional pdf of the output given the input f Y X. The selection of F usually follows restrictions/constraints enforced by the available technology while the conditional pdf f Y X depends on the propagation environment. In this work we concentrate on the additive Gaussian noise channel which is described by Y = X N () where N is a Gaussian random variable with variance that represents additive noise. All three variables X, N, and Y are considered to be real-valued, X, N, Y R, and -without loss of generality- we assume that N is zero-mean, i.e. N N(, ). The channel input X and noise N are assumed independent from each other. Let us first impose a imum-input-power constraint E X p. Then, the set of allowable input pdf s is given by F R(p) = f X : E X p. (3) Maximization of I(X; Y ) over F R(p) results in the popular capacity expression C R(p, ) = log ( p ). The capacity C R(p, ) is achieved if and only if the channel input X is zeromean Gaussian with power p, i.e. X N(, p) [], hence the input alphabet is the entire set of real numbers R. Since C R(p, ) is a function of the input SNR constraint γ p, we rewrite it as C R(γ) = log ( γ). (4) However, as mentioned earlier, the coded symbols are binary for most of the existing channel coding schemes. As a result, the capacity C R(γ) becomes a loose upper bound on the coding rate of such schemes, provided that arbitrarily small probability of error is desired. To obtain an upper bound for binary transmissions, that is the capacity of the AGN channel with binary input, we need to identify first the set of allowable input distributions. If a imum-input-power constraint E X p is imposed, then the set of allowable input pdf s is given by n F (p) = f : f(x) = δ(x p p ) ( )δ(x p p ), o [,], p p F R(p), (5) where δ(x) denotes the Dirac delta function, and the corresponding channel capacity becomes C (p,) = {I(X; Y )}. (6) f X F (p) Instead of evaluating C (p,) directly, let us consider at this point a constant-input-power constraint E X = p and the corresponding set of allowable input pdf s F (p) = {f : f(x) = δ(x p) ( )δ(x p), [, ]} F (p). (7) Followingly, we first derive the corresponding capacity C (p, ) = f X F (p) {I(X;Y )} (8) and subsequently show that C (p, ) = C (p,). We begin our derivation by applying a few basic properties from information theory to the definition of C (p,) and taking into account the Gaussian noise pdf. C (p, ) = {I(X; Y )} f X F (p) = f X F (p) {h(y ) h(y X)} = f X F (p) {h(y ) h(n)} = f X F (p) {h(y )} log ( πe ). (9) Since f X F (p), the distribution of Y consists of a Gaussian mixture parameterized in, f Y (x) = π e(x π e(x, () which implies that the entropy h(y ) is a function of as well. Therefore, to evaluate C (p, ) it is sufficient to (i) find the

value of [, ] that imizes h(y ) and (ii) evaluate h(y ) for that particular optimal value. Interestingly enough, imization of h(y ) over [, ] results in =, according to the following proposition. The proof is omitted due to lack of space. 4 Proposition If the random variable Y is distributed according to the density function f Y (x) = π e(x, then arg {h(y )} =. π e(x The actual entropy h(y ) of the random variable Y distributed according to f Y in () for the optimal value = is provided by the following fundamental proposition. The proof is omitted due to lack of space. Proposition If the random variable Y is distributed according to the density function f Y (x) = (x π e h(y ) = (x π e, then its entropy is equal to r ««p p p p π e Q () X () k ««p(k ) k(k ) Q e pk(k) log e k= log πe. R In (), Q(α) x π α e dx. The infinite series included in () satisfies Abel s uniform convergence test [9] over (p, ) [, ) (, ). The channel capacity C(p,) for binary transmissions over additive Gaussian noise subject to a constant-inputpower constraint is obtained from Eqs. (7), (9) and Propositions, as follows. C(p,) Prop. = (7),(9) X k= Prop. = () k k(k ) Q h(y ) r p f X F (p), = p π e p(k ) log ( πe ) ««p p Q «e pk(k) «log e. () From () it can be shown that C (p, ) is a monotonically increasing function of p. We present this result in the form of a corollary below. The proof is omitted due to lack of space. Corollary The channel capacity C(p,) for binary transmissions over zero-mean additive Gaussian noise with variance subject to a constant-input-power constraint E X = p is a monotonically increasing function of p. Then, from (5)-(8) and Corollary we obtain: C (p, ) (6) = {I(X; Y )} f X F (p) (5) = (7) p [,p] f X F (p ) (8) = C(p, ) p [,p] {I(X; Y )} Corollary = C (p, ). (3) 4 The conclusion of Proposition is stated in [6], [7], [8] without a proof. Hence, imum-input-power or constant-input-power constraints result in the same channel capacity given by (). Since C (p,) (similarly to C(p, )) is a function of the input SNR constraint γ = p, we rewrite it as C (γ) and express it in a closed form in the following lemma. Lemma Consider two independent random variables X ± p and N N(, p ). If γ, then the channel with input X and output Y = X N has capacity equal to C (γ) = k= r γ γ π e (γ ) Q( γ) X () k k(k ) Q( γ(k ))e γk(k) «log e. (4) The channel capacity C (γ) is achieved if and only if X is uniformly distributed and p = γ. In addition, (i) C (γ) is a monotonically increasing function of γ [, ), (ii) = C () C (γ) <, γ [, ), (iii) lim C(γ) =, and γ (iv) the infinite series included in C (γ) is uniformly convergent on γ [, ). For binary transmissions over additive Gaussian noise with a given imum-input-snr constraint γ, Eq. (4) determines the exact imum achievable coding rate for reliable communication between the transmitter and the receiver. Of course, the expression for the channel capacity in Eq. (4) is equivalent to its original definition [], [3], [6], [7], [4] log C (p, ) = @ e (x Z (x @ e e (x π A π (x e π A dx log π πe (5) as well as its modified representation [], [3] C (γ) = γ Z π e x log cosh (γ γx)dx. (6) However, in contrast to Eqs. (5) and (6) which still contain an integration, the new expression in Eq. (4) includes only the evaluation of the error function Q( ) at certain points and, in addition, the capacity can now be calculated with smaller complexity because -as shown in the next section- only the first six terms of the summation in Eq. (4) are practically required. It should be emphasized that the channel capacity in Eq. (4) is achievable when soft-decision decoding is performed by the receiver. For binary transmissions over additive Gaussian noise, the channel capacity certainly decreases if hard-decision decoding is enforced. Indeed, the Gaussian channel with binary input and hard-decision decoding is equivalent to the binary symmetric channel with transition probability Q( γ) [6], hence its capacity is given by [] C H(γ) = Q( γ) log Q( γ)( Q( γ)) log ( Q( γ)). (7) Comparison between C (γ) in (4) and C H(γ) in (7) indicates the coding rate loss due to hard-decision decoding

Channel Capacity.8.6.4 Realvalued input inary input and softdecision decoding inary input and harddecision decoding to obtain a channel capacity approximation that we denote by r γ (γ) γ π e (γ ) Q( γ) mx «(8) () k k(k ) Q( γ(k ))e γk(k) log e k= where m =,, 3,.... Theoretical studies on (γ) resulted in several interesting properties that we present in the form of a proposition below. The proof is omitted due to lack of space.. 5 5 5 Input SNR (d) Figure : Gaussian channel capacity with (i) real-valued input C R (γ), (ii) binary input and soft-decision decoding C (γ), and (iii) binary input and hard-decision decoding C H (γ) versus input SNR constraint γ. enforcement for the same imum-input-snr constraint γ. From another point of view, C H (R) C (R) expresses the input SNR loss due to hard-decision decoding for the same imum rate R. As an illustration of our theoretical developments, in Fig. we plot the channel capacity for binary transmissions over additive Gaussian noise followed by soft-decision or harddecision decoding (C (γ) or C H(γ), respectively) versus the imum-input-snr constraint γ. oth capacity curves are obtained directly from Eqs. (4) -originally derived in this present work- and (7). As a reference, we include the Gaussian channel capacity with real-valued input C R(γ). It is important to notice that the SNR gap between C (γ) and C H(γ) is significant for medium values of γ and becomes as large as.58d when the imum coding rate (capacity) is.5. In addition, when γ is greater that d the binary-input channel capacity C (γ) becomes significantly lower than the real-valued-input channel capacity C R(γ). We conclude that, as seen in Fig., Eq. (4) provides us with a useful upper bound on coding rates, especially for input SNR values within the range -d. III. inary Transmissions Over Additive Gaussian Noise: Lower and Upper ounds on the Channel Capacity Although the exact capacity C (γ) of the Gaussian channel with binary input subject to a imum-input-snr constraint γ was derived in Section II and presented in Lemma, computation limitations might impose restrictions on the number of calculable summation terms in (4). An unavoidable truncation of the infinite series in (4) results in an approximation of the exact capacity C (γ), raising questions about the accuracy of such an approximation, an issue that is addressed in this section. Let us keep only the first m terms of the summation in (4) Proposition 3 Let (γ), m =,,..., γ >, be defined as in Eq. (8). Then, for any γ > (i) the sequence increasing, (ii) the sequence decreasing, (iv) lim C (γ). (γ), m =,,..., is monotonically (γ), m =,,..., is monotonically (iii) the sequence (γ) C(γ), m =,,..., is monotonically decreasing, and (γ) = lim (γ) = lim (γ) = From Properties (i) and (iii), we conclude that (γ) < C (γ), m =,,.... That is, truncation of the infinite series at an odd number m of summation terms results in a lower bound on the channel capacity. According to Property (iv), the lower bound (γ) can be made arbitrarily tight by the selection of a sufficiently large number m. Similarly, Properties (ii) and (iii) imply that truncation at an even number m of terms results in an upper bound (γ) > C (γ), m =,,.... Again, Property (iv) establishes that arbitrary tightness of the upper bound (γ) is achieved by the selection of an appropriately large number of terms m. We summarize the above findings in the following lemma. Lemma Let (γ), m =,,..., γ >, be defined as in Eq. (8). Then, for any γ > the following statements hold true. () (3) (5) (i) < (γ) < (γ) < (γ) <... < C(γ) (6) (4) () <... < (γ) < (γ) < q (γ) «γ < γ π e (γ ) Q( γ) log e <. (ii) For any ε >, there exists a positive integer m such that for any m > m C (γ) ε < (γ) < C (γ) < (γ) < C (γ) ε. To illustrate the tightness of the lower or upper bounds that we obtain by truncating the infinite series at an odd or even, respectively, number of terms, in Fig. we plot the lower () () bounds (γ), (5) (γ) and upper bounds (γ), (6) (γ) versus the imum-input-snr constraint γ. As a reference, we include the exact channel capacity C (γ). As expected, when m = 5 or 6 the bounds become much tighter than when m = or. In fact, the inclusion of the first m 6 summation terms provides us with a lower or upper bound (γ) indistinguishably away from the exact channel capacity C (γ) for the entire range of imum-input-snr constraints γ.

Channel Capacity.9.8.7.6.5.4.3.. Lower bound (m=) Upper bound (m=) Lower bound (m=5) Upper bound (m=6) Exact value 5 5 5 Input SNR (d) Figure : Channel capacity C (γ) for binary transmissions over additive Gaussian noise and lower/upper bounds (γ) for m =,, 5, and 6 versus input SNR constraint γ. Therefore, as long as at least six terms are included in the summation in (8), the truncated series results in an accurate evaluation of the exact channel capacity in (4). References [] C. E. Shannon, A mathematical theory of communication, ell Syst. Tech. J., vol. 7, pp. 379-43, 63-656, July-Oct. 948. [] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York, NY: Wiley, 99. [3] G. Ungerboeck, Channel coding with multilevel/phase signals, IEEE Trans. Inform. Theory, vol. IT-8, pp. 55-67, Jan. 98. [4] S. Shamai (Shitz) and S. Verdú, Worst-case powerconstrained noise for binary-input channels, IEEE Trans. Inform. Theory, vol. 38, pp. 494-5, Sept. 99. [5] G. D. Forney, Jr. and G. Ungerboeck, Modulation and coding for linear Gaussian channels, IEEE Trans. Inform. Theory, vol. 44, pp. 384-44, Oct. 998. [6] J. G. Proakis, Digital Communications. 4th ed., New York, NY: McGraw-Hill,. [7] S. Haykin, Communication Systems. 4th ed., New York, NY: Wiley,. [8] S. Arimoto, An algorithm for computing the capacity of arbitrary discrete memoryless channels, IEEE Trans. Inform. Theory, vol. IT-8, pp. 4-, Jan. 97. [9] R. E. lahut, Computation of channel capacity and ratedistortion functions, IEEE Trans. Inform. Theory, vol. IT-8, pp. 46-473, July 97. [] D. Arnold and H.-A. Loeliger, On the information rate of binary-input channels with memory, in Proc. IEEE ICC, Helsinki, Finland, June, vol. 9, pp. 69-695. [] N. Varnica, X. Ma, and A. Kavčić, Capacity of power constrained memoryless AWGN channels with fixed input constellations, in Proc. IEEE GLOECOM, Taipei, Taiwan, Nov., vol., pp. 339-343. [] R. J. McEliece, The Theory of Information and Coding. nd ed., Cambridge, UK: Cambridge University Press,. [3] S. enedetto and E. iglieri, Principles of Digital Transmission With Wireless Applications. New York, NY: Kluwer, 999. [4] J. C. A. van der Lubbe, Information Theory. Cambridge, UK: Cambridge University Press, 997. [5] C. errou, A. Glavieux, and P. Thitimajshima, Near Shannon limit error-correcting coding and decoding: Turbo-codes, in Proc. IEEE ICC 993, Geneva, Switzerland, May 993, pp. 64-7. [6] R. G. Gallager, Low-density parity-check codes, IRE Trans. Inform. Theory, vol. IT-8, pp. -8, Jan. 96. [7] G. Lechner, Convergence of the sum-product algorithm for short low-density parity-check codes. Diploma Thesis, Institute of Communications and Radio-Frequency Engineering, Vienna University of Technology and Telecommunications Research Center, Vienna, Austria, Apr. 3. [8] J. Freudenberger, Untersuchung von Woven-Codes. Diploma Thesis, University of Ulm, Ulm, Germany, Jan. 999. [9] T. J. I A. romwich, An Introduction to the Theory of Infinite Series. London, UK: MacMillan, 965.