Effect of Precipitation on Operation Range of the CO 2

Similar documents
of Science and Technology, Daejeon, Republic of Korea

Current status of R&D in post combustion CO 2 capture

Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol

Available online at Energy Procedia 00 (2008) GHGT-9

Absorption kinetics of carbon dioxide into aqueous ammonia solution: Addition of hydroxyl groups for suppression of vaporization

Experimental study into carbon dioxide solubility and species distribution in aqueous alkanolamine solutions

The Study of Structure Design for Dividing Wall Distillation Column

A Thermodynamic Model for Determination of Carbon Dioxide Solubility and Ionic Speciation in Aqueous Alkanolamine Solutions

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT USA

Simulation of gas sweetening process using new formulated amine solutions by developed package and HYSYS

Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat.

Application of GMA Equation of State to Study Thermodynamic Properties of 2- Amino-2-methyl-1-propanol as an Efficient Absorbent for CO 2

Faculty of Technology, Telemark University College, Kjølnes Ring 56, 3918 Porsgrunn, Norway. 2. Tel-Tek, Kjølnes Ring 30, 3918 Porsgrunn, Norway.

Development of reactive chemical absorbents at the CSIRO

Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine

Updating 8 m 2MPZ and Independence Models

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

Carbon Dioxide Absorption into Aqueous Blends of Potassium Carbonate and Amine

Temperature Control in Autothermal Reforming Reactor

Regeneration Section of CO 2 Capture Plant by MEA Scrubbing with a Rate-Based Model

A rational approach to amine mixture formulation for CO 2 capture applications. Trondheim CCS Conference - 6 June 14 16, 2011 Graeme Puxty

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

Reaction kinetics of carbon dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in aqueous solution obtained from the stopped flow method

GEOL 414/514 ACTIVITY COEFFICIENTS OF DISSOLVED SPECIES

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han

Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

Modelling and prediction of the solubility of acid gases in diethanolamine solutions

Kinetics of absorption of carbon dioxide in aqueous ammonia solutions Derks, P. W. J.; Versteeg, Geert

Miho Nitta a, Masaki Hirose a, Toru Abe a, Yukio Furukawa a, *, Hiroshi Sato b, Yasuro Yamanaka c

Simulation of CO 2 removal in a split-flow gas sweetening process

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

Ki-Sub Kim, Jong-Won Lee, Jin-Soo Kim and Huen Lee

Slide 1. Slide 2. Slide 3. Colligative Properties. Compounds in Aqueous Solution. Rules for Net Ionic Equations. Rule

CO 2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups

Measurement and modeling of solubility of H 2 S in aqueous diisopropanolamine solution

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate

ABSTRACT INTRODUCTION

CO 2 CAPTURE BY ABSORPTION IN ACTIVATED AQUEOUS SOLUTIONS OF N,N-DIETHYLETHANOLOAMINE

Chapter 12 & 13 Test Review. Bond, Ionic Bond

The Refined Electrolyte-NRTL Model applied to CO 2 -H 2 O-alkanolamine systems

A NEW SOLVENT FOR CO2 CAPTURE R.

Thermodynamic and dynamic investigation for CO 2 storage in deep saline aquifers

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION

Variable hydration of small carbohydrates for prediction of equilibrium properties in diluted and concentrated solutions

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Lecture 6. NONELECTROLYTE SOLUTONS

The solubility of carbon dioxide in aqueous N-methyldiethanolamine solutions

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation

Volatility of MEA and Piperazine

Benefits from the Rigorous Mass Transfer Rate Approach to Modelling Acid Gas Absorption Using Mixed Amines

Chemistry 2000 Lecture 11: Chemical equilibrium

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

Solubility of Hydrogen in Aqueous Solutions of Sodium and Potassium Bicarbonate from 293 to 333 K

3.Which of the following has the highest melting temperature? A) H 2 O B) CO 2 C) S 8 D) MgF 2 E) P 4

Absorption of carbon dioxide into non-aqueous solutions of N-methyldiethanolamine

Simulation of CO 2 Removal by Potassium Taurate Solution

Chapter 2 Introduction to Aqueous Speciation

Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling

Effect of alcohol chain length on carbon dioxide absorption into aqueous solutions of alkanolamines

Solutions and Their Properties

Simulation of a bubbling fluidized bed process for capturing CO 2 from flue gas

Chem 12 Exam 3. Basic Skills Section. 1. What is the chemical formula for aluminum nitrate?

Outline of the Course

Activities and Activity Coefficients

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Chemistry 192 Problem Set 7 Spring, 2018

I. Multiple Choice Questions (Type-I) is K p

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process

Chapter 3 Stoichiometry

(i) Purification of common salt

Available online at Energy Procedia 1 (2009) (2008) GHGT-9

LECTURE 6 NON ELECTROLYTE SOLUTION

Heat of Absorption of CO 2 in Aqueous Solutions of DEEA, MAPA and their Mixture

3 BaCl + 2 Na PO Ba PO + 6 NaCl

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.

MOCK FINALS APPCHEN QUESTIONS

Absorption of Carbon Dioxide at High Partial Pressures in Aqueous Solutions of Di-isopropanolamine

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

CHEMISTRY 202 Practice Hour Exam I. Dr. D. DeCoste T.A.

SELECTIVE REMOVAL OF CARBON DIOXIDE FROM AQUEOUS AMMONIA SOLUTIONS

A NEW AND A SIMPLE MODEL FOR SURFACE TENSION PREDICTION OF WATER AND ORGANIC LIQUID MIXTURES * R. TAHERY AND H. MODARRESS **

5. What is the name of the phase transition that occurs when a solid is converted directly into a gas (without going through the liquid phase)?

Final Exam Review-Honors Name Period

Viscosity data of aqueous MDEA [Bmim][BF 4 ] solutions within carbon capture operating conditions

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure

Sectional Solutions Key

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

Extraction of Phenol from Industrial Water Using Different Solvents

PCC3 CONFERENCE The role of bicarbonate(hco 3- ) in the VLE of DEAB and blended MEA-DEAB systems under

Initial amounts: mol Amounts at equilibrium: mol (5) Initial amounts: x mol Amounts at equilibrium: x mol

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Chapter 8 Acids, Bases, and Acid-Base Reactions. An Introduction to Chemistry by Mark Bishop

Thermodynamics IV - Free Energy and Chemical Equilibria Chemical Potential (Partial Molar Gibbs Free Energy)

Balances 9, , 623, 643, , , 679 (also see Electroneutrality. Material balances)

Transcription:

Korean Chem. Eng. Res., Vol. 45, No. 3, June, 007, pp. 58-63 g g o mk m o oi n m oi iii i lo Ç Ç k Ç p *Ç p * o 305-701 re o 373-1 * l v l o rl 305-343 re o q 71- (006 1o 18p r, 007 1o 11p }ˆ) Effect of Precipitation on Operation Range of the Capture Process using Ammonia Water Absorbent Jong Kyun You, Ho Seok Park, Won Hi Hong, Jongkee Park* and Jong-Nam Kim* Department of Chemical and Biomolecular Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea *Chemical Process Research Center, KIER, 71- Jang-dong, Yuseong-gu, Daejeon 305-343, Korea (Receivecd 18 January 006, accepted 11 January 007) k d p ˆ } o r rp n r k k p rn p m. p ˆ n r p rl r k k r m (loading, mol / ) r m. p o l r kl Pitzer p pn l k k r l n r l m. 5 O p p k k r n l s k r p p n p lp pl. k k r l NH 4 rp p p l slp rk m. 5~14 Op k k r 93, 313 Kl 0.5 p l rp m. r p ˆp sl p f k k r d } rl n ppp k pl. n r p l d p ˆ } o r rm k k l 97~31 Kpl. h Abstract Ammoniater was investigated as a new absorbent of the chemical absorption process for the removal of in flue gas. The suitable range of ammoniater concentration and loading (mol CO /mol NH 3 ) were decided in the point of view of absorption capacity and NH 4 precipitation. The absorption capacity of and the precipitation of NH 4 in liquid phase were calculated by the Pitzer model for electrolyte solution. The absorption capacity of the ammoniater over 5 O was higher than that of conventional amine absorbent. The loadings where precipitation occurred were decided at various absorbent concentrations. Theses values were higher than 0.5 in the concentration range of 5-14 O at 93, 313 K. The absorber for the removal of in flue gas could be operated without NH 4 precipitation by using high concentration of ammoniater below these loading values. The optimum temperature of the ammoniater absorbent for removal of in flue gas was 97-31 K depending on the concentration of ammoniater. Key words: Ammonia Water, Absorption, Carbon Dioxide, Precipitation, Pitzer Model 1. p ˆ v m p tnopp k r p. Špr k s ll p ˆ r o p l v p. l v p ˆ } t, k To whom correspondence should be addressed. E-mail: whhong@kaist.ac.kr rl p r p d tp p ˆ } q rp rp k r p [1]. p pn p ˆ p } rl MEA(monoethanolamine), DEA (diethanolamine), MDEA(N-methyldiethanolamine), AMP(-Amino-- methyl-1-propanol) p k r p rp n. Yehm Bai[-3] k k k rl n q l v l qrp v tq k k d 58

k k r pn p ˆ r rl r p sl mll m 59 } n r re m. k k rl n n, k rm k kp ep r p r p. k kp ep, k l p r, p p p opp p. k k d } n r n e r l p lr r. r p p re lp er q l rn m kv l. l l d } n rl k k r p rn p m. p ˆ n r p rl k k rp sl s p r m. p o l rl rp r m, r kl Pitzer p n l k k rl sq p m.. m d t p ˆ k k rm e (1)~(5)p p p k p. H O Ë NH 4 OH (1) H O Ë HCO 3 H () HCO 3 Ë H (3) Ë NH COO H O (4) H O Ë H OH (5) (1)~(5)p p l NH 4, NH COONH 4, (NH 4 p r pp p. pp e (6)~(10), p e (11)p ˆ l. e (11)l Table 1l re l [4, 5]. K 1 m NH4 m -------------------------- γ γ OH NH4 --------------------- OH m NH3 γ NH3 m K HCO3 m H -------------------------- γ HCO3 --------------------- m CO γ H γ CO γ H m K CO3 m H 3 ----------------------- γ CO3 ------------------ K 4 K 5 m γ HCO3 HCO3 m NHCOO ----------------------------- γ a NHCOO w ------------------------- m NH3 m γ NH3 γ HCO3 HCO3 γ γ H OH m H m OH ---------------- C lnk C 1 ----- C T 3 lnt C 4 T (6) (7) (8) (9) (10) (11) e (1)~(5)p pl p r,, H Om NH 4, Table 1. Coefficients for equilibrium constants for reaction (1) to (5) [4, 5] C lnk C 1 ----- C T 3 lnt C 4 T Reaction C 1 C C 3 10 C 4 1 97.976-5,930.7-15.063-1.117 10.8-7,74.6-14.506 -.8104 3 116.73-8,98.0-18.11 -.49 4 19.817 55.69-4.0400 0.46898 5 140.93-13,445.9 -.4773 000 NH COO, HCO 3, 3, H, OH p pmsp r v (electrolyte) nkp. r v nkl p Gibbs energy Pitzer[6]l p e (1) re l [7]. G E ( 0) --------------------- f RTn w M 1 ( I) m i m j β ij w i wj w m i m j i wj wk w ( ( 1) β ij ( )) m k τ ijk (1) e (1)p p p (acivity coefficient) (1) lp p. p rp k lv rp β ij e [4] e (13)p llv. I lnγ i A φ z i ---------------- ( 0) --ln( 1 b I) m 1 b I b j β ij 3 m j m k τ ijk j w j wk w (13) e (13)p m e (6)~(10)p p e 5, e (14)~(16)p v ve, r ve(electroneutrality)p l re p l p (molality) p. m NH3 t m, NH3 m NH4 m NHCOO m CO, t m NH3 t α m m m, CO NHCOO HCO3 m NH4 m H m m NHCOO m HCO3 CO3 m OH 3. y (14) (15) (16) 3-1. nm o rp k rl rp v k mll sl lk. p ml p p p l k k r l rp n, p r p p o l r p m. rp k k r l l rp NMR m. k k rl l NH 4, NH COONH 4, (NH 4 p rp p. p v p t o } o (> 99%)p NMRp r l Fig. 1(A)l ˆ l. NH 4 p n 16 ppm, NH COONH 16, 167, 168 ppm, (NH 4 160 ppm p l r rp m. 95 Kp ml 10~5 wt% k k l tp l rp okp v pe. 10 k v lp snkp ph k k l 8.1~9.m. r l r p NMR Fig. 1(B)l ˆ l. NMR m 16 ppm }l p l r p NH 4 pp p pl. p NH COONH 4 m (NH 4 mp l n NH 4 l j l rp rp n p NH 4 sq p. l NH 4 r l. 3-. h d p ˆ rp ˆ sls p l r f I m CO3 Korean Chem. Eng. Res., Vol. 45, No. 3, June, 007

60 or Ë Ë o Ë s Ë s Fig. 1. NMR spectra of (A) ammonium carbamate, ammonium carbonate, and ammonium bicarbonate, (B) products after the reaction between ammoniater and carbon dioxide at various concentrations from 10 to 5 wt%. m 93~333 K, k k mol NH /kg H O p l k 3 rl sq p m. p o p m p l p l m p kp l [8, 9] l Fig. m 3l ˆ l. r m 93~333 K, k k.1~11.8 Op ol p q p p p. Edward [4] Kurz [8]p e (13)p p o binary interaction parameter / /H O l l m. p k k l l Kurz [8]p re interaction parameter n n p p q m. 3-3. m k k k r d p ˆ rl n o q n p k r p p n p lk. k k l p r k rp MEA(monoethanolamine)m AMP(-Amino--methyl-1- propanol) l Fig. 4l ˆ l. 5 O(8 wt%) p p k k r n l 30 wt%p n k MEA, AMP p n p lp pl. 3-4. n m oiiii i r NH 4 e (17)p pp n (solubility o45 o3 007 6k Fig.. Partial pressure of (A) and (B) in the.1 mol/kg aqueous solution at various temperatures;,, -experimental data (Van Krevelen et al.[8]), Line - prediction, this work. product)p e (18) re l [8]. NH 4 K NH4HCO3 Ë NH 4 (s) (17) m NH4 m γ γ HCO3 NH4 HCO3, 365.3 exp 8.3413 --------------------- T (18) rp (loading) p p p s m. r p v l NH 4 m HCO 3 pm m. pm sp p p e (18)p n ƒv r p [8]. r mll p p o l Kurz [8]p m. Kurz [8]p m 313 K, k k 6.3, 11.8 mol/kgl kl r l m. Fig. 5l ˆ m p rp ml v k mlp q m. Fig. 6l k k l k r l NH 4 rp eq (α precipitation )p ˆ l. r p p lr o l p p l ˆp nr lk. p rp d } rl r

k k r pn p ˆ r rl r p sl mll m 61 Fig. 5. Prediction of solubility limitation of NH 4 at 313 K:, experimental data (Kurz et al.[8]) -without precipitation, - with precipitation, Line - prediction, this work. Fig. 3. Partial pressure of (A) and (B) in the various concentrations aqueous solution;,, -experimental data (Kurz et al.[8], Van Krevelen et al.[9]), Line - prediction, this work. Fig. 6. loading of NH 4 precipitate formation at various concentration of ammoniater. 0.5 p l sl p, slm 93~313 K l l 5 O p p k k k l p r rlp r n ppp k p. Fig. 4. Comparison of absorption capacity between ammoniater and conventional amine absorbents; -experimental data (Shen et al.[10]), -experimental data (Li et al.[11], Seo et al.[1]), Line - prediction, this work. 3-5. oi p rp rp (α max )p p p (α eq )p r. m p p n v α eq v l l o v, p m l NH 4 p r p np r sl Korean Chem. Eng. Res., Vol. 45, No. 3, June, 007

6 or Ë Ë o Ë s Ë s ) r m. p l k k rl rp p p o l 6.5~0 O(10~5 wt%) k k l rp NMR r m. NMR m 16 ppml l r p NH 4 p p p m. Pitzer p pn l k k r l n l r l m. 5 O p p k k r n l s k r p p n p lp pl. k k r l NH 4 rp p p l slp rk m. 5~14 Op k k r 93, 313 Kl 0.5p l rp m. r p ˆp sl p f k k r d } rl n ppp k pl. n r p l d p ˆ } o r rm k k l 97~31 Kpl. 9 O k k 303 Kl n 0.1 kg /kg solution(1.6 kg /kg )p ˆ l. Fig. 7. Maximum (A) loading and (B) absorption capacity of ammoniater at various temperatures (p CO 15 kpa). p rp s (α precipitate )l r p. Fig. 7(A)l k 15 kpap dl l k k rp m, sl p ˆ l. 5 / kgh Op rl rp v kp p p k s (α eq )l p r l. 7 O p p rp n rp mlp s q l p m mll sl rp (α precipitation )p r l. Fig. 7(A)l ˆ m p q p sl p ˆ m 7~13 mol /kg H Ol 97~31 K v m. sl p n (kg /kg solution)p ˆ Fig. 7(B)m. k 15 kpap l d } l l k k l n p v, r p l rp m sq p p. 9 Op n r s 303 Kl n 0.1 kg /kg solution(1.6 kg /kg )p lp pl. 4. d p ˆ } n k k r k k p rn p m. p ˆ n r p rl r k k r m (loading, mol / o45 o3 007 6k l p ˆ r } l (CDRS, Carbon Dioxide Reduction and Sequestration R&D Center)p vop lp pl. k A φ : debye-hückel constant [kg 1/ mol -1/ ] : activity of pure water [mol/kg] b : parameter in equation (13) [kg 1/ mol -1/ ] f 1 (I), f (I) : functions in Pitzer s equation G E : total excess Gibbs free energy I : ionic strength [mol/kg] K : equilibrium constant of reaction with activities expressed in molalities M w : molecular weight of pure water [kg/mol] : molality of species i [mol/kg] m i m CO,t m CO,eq m NH3,t n w : total molality of [mol/kg] : molality of in equilibrium with gas phase [mol/kg] : total molality of [mol/kg] : number of moles of pure water [mol] R : gas constant T : temperature [K] z i : ionic charges on species i [-] m m α : loading moles of /moles of [-] (0) (1) β ij, β ij γ i τ ijk : binary interaction parameters defined by Pitzer : activity coefficient of species i (on molality scale) : ternary interaction coefficient

k k r pn p ˆ r rl r p sl mll m 63 y 1. Chakma, A., Separation of and SO from Flue Gas Streams by Liquid Membranes, Energy Convers. Manage., 36(6/9), 405-410(1995).. Yeh, A. C. and Bai, H., Comparison of Ammonia and Monoethanolamine Solvents to Reduce Greenhouse Gas Emissions, The Science of the Total Environment, 8(/3), 11-133(1999). 3. Bai, H. and Yeh, A. C., Removal of Greenhouse Gas by Ammonia Scrubbing, Ind. Eng. Chem. Res., 36(6), 490-493(1997). 4. Edwards, T. J., Maurer, G., Newman, J. and Prausnitz, J. M., Vapor-Liquid Equilibria in Multicomponent Aqueous Solutions of Volatile Weak Electrolytes, AIChE J., 4(6), 966-976(1978). 5. Bieling, V., Rumpf, B. and Maurer, G., An Evolutionary Optimization Method for Modeling the Solubility of Ammonia and Carbon Dioxide in Aqueous Solutions, Fluid Phase Equilibria, 53, 51-59(1989). 6. Pitzer, K. S., Thermodynamics of Electrolytes, J. Phys. Chem., 77(), 68-77(1973). 7. Bieling, V., Kurz, F., Rumpf, B. and Maurer, G., Simultaneous Solubility of Ammonia and Carbon Dioxide in Aqueous Solution of Sodium Sulfate in the Temperature Range 313-393K and Pressure up to 3 MPa, Ind. Eng. Chem. Res., 34, 1449-1460(1995). 8. Kurz, F., Rumpf, B. and Maurer, G., Vapor-Liquid-Solid Equilibria in the System - -H O from Around 310 to 470 K: New Experimental Data and Modeling, Fluid Phase Equilibria, 104, 61-75(1995). 9. Van Krevelen, D. W., Hoftijzer, P. J. and Huntjens, F. J., Composition and Vapour Pressures of Aqueous Solutions of Ammonia, Carbon Dioxide, and Hydrogen Sulphide, Rec. Trav. Chim. Pays-bas, 68, 191-16(1949). 10. Shen, K.-P. and Li, M.-H., Solubility of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine with Methyldiethanolamine, J. Chem. Eng. Data, 37(1), 96-100(199). 11. Li, M.-H. and Chang, B.-C., Solubilities of Carbon Dioxide in Water Monoethanolamine -amino--methyl-1-propanol, J. Chem. Eng. Data, 39(3), 448-45(1994). 1. Seo, D.-J. and Hong, W. H., Solubilities of Carbon Dioxide in Aqueous Mixtures of Diethanolamine and -Amino--methyl-1- Propanol, J. Chem. Eng. Data, 41(), 58-60(1996). Korean Chem. Eng. Res., Vol. 45, No. 3, June, 007