The Amoroso Distribution

Similar documents
Continuous probability distributions

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

Text: WMM, Chapter 5. Sections , ,

The Amoroso Distribution

A Propagating Wave Packet Group Velocity Dispersion

Exercise 1. Sketch the graph of the following function. (x 2

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

3 Finite Element Parametric Geometry

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

Functions of Two Random Variables

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

The Matrix Exponential

The Matrix Exponential

Derangements and Applications

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

Functions of Two Random Variables

EEO 401 Digital Signal Processing Prof. Mark Fowler

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Self-interaction mass formula that relates all leptons and quarks to the electron

Random Process Part 1

6. The Interaction of Light and Matter

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Journal of Modern Applied Statistical Methods May, 2007, Vol. 6, No. 1, /07/$ On the Product of Maxwell and Rice Random Variables

Evaluating Reliability Systems by Using Weibull & New Weibull Extension Distributions Mushtak A.K. Shiker

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

Types of Transfer Functions. Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

(Upside-Down o Direct Rotation) β - Numbers

SER/BER in a Fading Channel

ANALYSIS IN THE FREQUENCY DOMAIN

Homotopy perturbation technique

On the irreducibility of some polynomials in two variables

1 Isoparametric Concept

Search sequence databases 3 10/25/2016

10. The Discrete-Time Fourier Transform (DTFT)

Problem Set 6 Solutions

Solution of Assignment #2

Types of Transfer Functions. Types of Transfer Functions. Ideal Filters. Ideal Filters. Ideal Filters

Higher order derivatives

Estimation of apparent fraction defective: A mathematical approach

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

EEO 401 Digital Signal Processing Prof. Mark Fowler

Hydrogen Atom and One Electron Ions

Equidistribution and Weyl s criterion

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Abstract Interpretation: concrete and abstract semantics

Lecture 6.4: Galois groups

INTEGRATION BY PARTS

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

BSc Engineering Sciences A. Y. 2017/18 Written exam of the course Mathematical Analysis 2 August 30, x n, ) n 2

That is, we start with a general matrix: And end with a simpler matrix:

Deift/Zhou Steepest descent, Part I

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Limiting value of higher Mahler measure

ECE 650 1/8. Homework Set 4 - Solutions

Math 34A. Final Review

1973 AP Calculus AB: Section I

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

EXST Regression Techniques Page 1

An Extensive Study of Approximating the Periodic. Solutions of the Prey Predator System

Objective Mathematics

GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES. Eduard N. Klenov* Rostov-on-Don, Russia

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Einstein Rosen inflationary Universe in general relativity

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China

Thomas Whitham Sixth Form

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Exact and Approximate Detection Probability Formulas in Fundamentals of Radar Signal Processing

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: WHAM and Related Methods

Homework #3. 1 x. dx. It therefore follows that a sum of the

surface of a dielectric-metal interface. It is commonly used today for discovering the ways in

Supplementary Materials

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Inference Methods for Stochastic Volatility Models

Computing and Communications -- Network Coding

Elements of Statistical Thermodynamics

What are those βs anyway? Understanding Design Matrix & Odds ratios

Procdings of IC-IDC0 ( and (, ( ( and (, and (f ( and (, rspctivly. If two input signals ar compltly qual, phas spctra of two signals ar qual. That is

a 1and x is any real number.

Einstein Equations for Tetrad Fields

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Complex Powers and Logs (5A) Young Won Lim 10/17/13

Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient

Title. Author(s)Pei, Soo-Chang; Ding, Jian-Jiun. Issue Date Doc URL. Type. Note. File Information. Citationand Conference:

Image Filtering: Noise Removal, Sharpening, Deblurring. Yao Wang Polytechnic University, Brooklyn, NY11201

Quasi-Classical States of the Simple Harmonic Oscillator

4. (5a + b) 7 & x 1 = (3x 1)log 10 4 = log (M1) [4] d = 3 [4] T 2 = 5 + = 16 or or 16.

(1) Then we could wave our hands over this and it would become:

CHAPTER 5. Section 5-1

A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x "±# ( ).

CS 361 Meeting 12 10/3/18

Transcription:

Tch. Not 003v (007-08-4) Th Amoroso Distribution Gavin E. Crooks gcrooks@lbl.gov Th Amoroso distribution, is a continuous, univariat, unimodal probability distribution with a smiinfinit rang. A surprisingly larg mnagri of intrsting, univariat probability distributions ar spcial cass or limiting forms of th Amoroso distribution. Amoroso(x ν,, α, ) = ( ) { α ( ) } x ν x ν Γ(α) xp ν,, + α > 0 x ν ( > 0) x ν ( < 0) (a) This distribution has four ral paramtrs; a location paramtr ν, a scal paramtr, and two shap paramtrs α and. Anothr usful paramtrization is Amoroso (x µ,, α, λ) ( = αα + λ x µ Γ(α) = Amoroso(µ λ,, α, /λ) λαλ (b) ) α { λ ( xp α + λ x µ In th limit that λ 0, th rang bcoms x [, + ] and Amoroso (x µ,, α, 0) { ( ) ( )} = αα x µ x µ Γ(α) xp α α xp (c) (Rcall that lim a 0 ( + ax) /a = x ) W will dfin th standard Amoroso distribution as StdAmoroso(x) = x x = Amoroso(x 0,,, ) = Amoroso (x,,, ) (d) Stting to yilds Parson s typ V (March) distribution 3,4 ParsonV(x µ,, α) = ( ) α+ Γ(α) x ν =Amoroso(x ν,, α, ) () If w st th shap paramtr to unity w obtain Parson s typ III (Vinci) distribution 5 7. ParsonIII(x ν,, α) = ( ) α x ν ( ) Γ(α) (3) =Amoroso(x ν,, α, ) ) λ } 0.35 0.3 0.5 0. 0.5 0. 0.05 4 6 8 () Amoroso ν α µ α λ () Parson typ V... -... - (3) Parson typ III...... (4) Nakagami...... (6) gnralizd Frécht.. n <0.. n <0 (8) gnralizd Gumbl.. n 0 (5) gnralizd Wibull.. n >0.. n >0 (7) gnralizd xtrm valu...... (4) Frécht.. <0.. <0 (33) gnralizd log gamma... 0 (9) Gumbl.. 0 (3) BHP.. π 0 (5) Wibull.. >0.. >0 (9) shiftd xponntial.... (3) log gamma x.. 0 (5) gnralizd gamma 0... (9) scald invrs-chi 0.. - (6) invrs gamma 0.. - (34) Jffrys 0.. 0 (6) gamma 0.. () scald chi 0.. (0) strtchd xponntial 0.. () Lévy 0. - (3) half normal 0. () invrs Rayligh 0. - (0) invrs xponntial 0. - (8) xponntial 0. (4) Rayligh 0. (5) Maxwll 0. 3 (6) Win 0. 4 (7) invrs chi-squar 0. - (8) invrs chi 0. - () chi 0. (7) chi-squar 0. (8) standard xponntial 0 (30) standard Gumbl 0 0 (d) standard Amoroso 0

With = w obtain th Nakagami (gnralizd normal) distribution. Nakagami(x ν,, k/, ) (4) ( ) { k ( ) } x ν x ν = xp Γ(k/) If w drop th location paramtr from Amoroso, thn w obtain th gnralizd gamma (hypr gamma, gnralizd Wibull) distribution, th parnt of th gamma family of distributions 8,9. GnGamma(x, α, ) = ( x ) α ( x ) (5) Γ(α) x > 0, > 0 =Amoroso(x 0,, α, ) If th is ngativ thn th distribution is gnralizd invrs gamma. Not surprisingly th gamma (scald-chi-squar) distribution 5,7 is a spcial cas of th gnralizd gamma, whr th scond shap paramtr is st to unity. Gamma(x, α) = Γ(α) ( x ) α x/ = ParsonIII(x 0,, α) = GnGamma(x, α, ) = Amoroso(x 0,, α, ) Instancs of th gamma distribution oftn appar in statistical physics. For xampl th Win (Vinna) distribution Win(x T ) = Gamma(x T, 4) (An approximation to th rlativ intnsity of black body radiations as a function of th frquncy). Th Erlang distribution is a gamma distribution with intgr α. Not that w obtain Amoroso by adding to th gamma distribution both a location (as in Parson typ III) and an additional shap paramtr (as in th gnralizd gamma). Important spcial cass of th gamma distribution includ th chi-squar (χ, chi squard) distribution ( x ) k/ ChiSqr(x k) = x/ (7) Γ(k/) = Gamma(x, k/) = GnGamma(x, k/, ) = Amoroso(x 0,, k/, ) and th xponntial (Parson typ X) distribution (6) Exp(x ) = x (8) = Gamma(x, ) = Amoroso(x 0,,, ) W can also obtain a shiftd xponntial distribution as a spcial cas of th Parson typ III distribution ShiftExp(x ν, ) = (9) = ParsonIII(x ν,, ) = Amoroso(x ν,,, ) Strtchd xponntial 0 StrtchdExp = ( x ) ( x ) (0) = Amoroso(x 0,,, ) Additional spcial cass of th gnralizd gamma distribution includ th chi (χ) distribution ( ) k x Chi(x k) = Γ(k/) x / = GnGamma(x, k/, ) = Amoroso(x 0,, k/, ) and scald-chi (gnralizd Rayligh) distribution. ( ) k x ScaldChi(x s, k) = Γ(k/) x s s s = GnGamma(x s, k/, ) = Amoroso(x 0, s, k/, ) () () Spcial cass of th scald-chi distribution includ th half-normal (smi-normal, positiv dfinit normal ) distribution, HalfNormal(x s) = th Rayligh distribution x s (3) πs = ScaldChi(x s, ) = GnGamma(x s, /, ) = Amoroso(x 0, s, /, ) Rayligh(x s) = x x s s (4) = ScaldChi(x s, ) = GnGamma(x s,, ) = Amoroso(x 0, s,, ) and th Maxwll (Maxwll-Boltzmann) distribution Maxwll(x s) = πs 3 x x s (5) = ScaldChi(x s, 3) = GnGamma(x s, 3/, ) = Amoroso(x 0, s, 3/, ) With ngativ shap paramtrs, th gnralizd gamma gnrats various invrs distributions, including th invrs gamma (scald invrs chi-squar ) distribu-

3 tion, InvGamma(x, α) = Γ(α) th invrs-chi-squar distribution, InvChiSqr(x k) = th invrs-chi distribution, ( ) α+ /x (6) x = GnGamma(x, α, ) = ParsonV(x 0,, α) = Amoroso(x 0,, α, ) ( ) k + x (7) Γ(k/) x = InvGamma(x /, k/) = GnGamma(x /, k/, ) = ParsonV(x 0, /, k/) = Amoroso(x 0, /, k/, ) InvChi(x k) = ( ) k+ x Γ(k/) (8) x scald invrs-chi distribution, = GnGamma(x /, k/, ) = Amoroso(x 0, /, k/, ) ScaldInvChi(x s, k) = s invrs xponntial, Γ(k/) ( ) k+ s x s x (9) = GnGamma(x / s, k/, ) = Amoroso(x 0, / s, k/, ) InvExp(x ) = x /x (0) and invrs Rayligh. = InvGamma(x, ) = GnGamma(x,, ) = Amoroso(x 0,,, ) InvRayligh(x ) = ( ) 3 8s s x x () = GnGamma(x / s,, ) = Amoroso(x 0, / s,, ) Th Lévy distribution (Van dr Waals profil) is a spcial cas of th invrs gamma distribution. Th Lévy distribution is notabl for bing stabl; a linar combination of idntically distributd Lévy distributions is again a Lévy distribution. Th othr stabl distributions with analytic forms ar th normal (which w ncountr blow) and th Cauchy distribution, which is not a mmbr of th Amoroso family. c c/x Lévy(x c) = () π x 3/ = InvGamma(x c/, /) = GnGamma(x c/, /, ) = ParsonV(x 0, c/, /) = Amoroso(x 0, c/, /, ) Th Wibull (xtrm valu typ III, Fishr-Tipptt typ III, Gumbl typ III) distribution,3 occurs with th shap paramtr α =. This is th limiting distribution of th minimum of a larg numbr idntically distributd random variabls that ar at last ν. (Maximum if is ngativ.) Wibull(x ν,, ) = ( x ν = Amoroso(x ν,,, ) ) ( ) (3) Spcial cass of th Wibull distribution includ th xponntial ( = ) and Rayligh ( = ) distributions, and th standard Wibull (ν = 0). Th Frécht (xtrm valu typ II, Fishr-Tipptt typ II, Gumbl typ II, invrs Wibull) distribution is th limiting distribution of th largst of a larg numbr idntically distributd random variabls whos momnts ar not all finit and ar boundd from blow by ν. (If th shap paramtr is ngativ thn minimum rathr than maxima.) ( ) Frécht(x ν,, ) = + x ν ( ) = Amoroso(x ν,,, ) (4) Spcial cass of th Frécht distribution includ th invrs xponntial ( = ) and invrs Rayligh ( = ) and th standard Frécht (ν = 0) distribution. Instad of asking for th minimum or maximum of a larg numbr of random variabls, w instad ask for th nth largst w obtain th gnralizd Wibull distribution GnWibull(x ν,, n, ) = ( ) n x ν and th gnralizd Frécht distribution. GnFrécht(x ν,, n, ) = ( )n = Amoroso(x ν,, n, ) (5) ( ) n + x ν ( )n = Amoroso(x ν,, n, ) (6) Th gnralizd xtrm valu (GEV, von Miss- Jnkinson) distribution is th suprclass of typ I, II and

4 III xtrm valu distributions. GnExtrmValu(x µ,, λ) (7) = ( + λ x µ ) { λ ( xp + λ x µ ) } λ = Amoroso (x µ,,, λ) = Amoroso(µ λ,,, /λ) λαλ Th gnralizd Gumbl (gnralizd log-gamma) distribution is th limiting distribution of th nth largst valu of a larg numbr of unboundd idntically distributd random variabls. GnGumbl(x µ,, n) (8) = ( ) ( )} µ x µ x {n xp n xp = Amoroso (x µ,, n, 0) If w limit n = thn w obtain th Gumbl (Fishr- Tipptt (typ I), Fishr-Tipptt-Gumbl, FTG, Gumbl- Fishr-Tipptt, log-wibull, xtrm valu (typ I), doubly xponntial) distribution Gumbl(x µ, ) (9) = {( ) ( )} x µ x µ xp xp = Amoroso (x µ,,, 0) With ngativ scal < 0, this is an xtrm valu distribution of maximum, with > 0 an xtrm valu distribution of minima. (Not that oftn th Gumbl is dfind with th ngativ of th scal usd hr.) A Gomprtz distribution is a truncatd Gumbl. Th standard Gumbl (Gumbl) distribution is StdGumbl(x) = xp {x x } (30) =Amoroso (x 0,,, 0) Anothr spcial cas of th gnralizd Gumbl is th BHP (Bramwll-Holdsworth-Pinton) distribution 4,5 BHP(x µ, ) (3) = { ( ) π x µ xp π ( )} x µ xp = Amoroso (x µ,, π, 0) Log-gamma LogGamma(x, α) = { ( x ) ( x )} Γ(α) xp α xp =Amoroso (x ln α,, α, 0) (3) Gnralizd Log-Gamma(Coal-McNil 6,7 ) GnLogGamma(x µ,, α) (33) = { ( ) ( )} x µ x µ Γ(α) xp α xp = Amoroso (x µ + ln α,, α, 0) If w lt = 0 thn w obtain Jffrys distribution 8, an impropr (unnormalizabl) distribution widly usd as an uninformativ prior in Baysian probability 9. Jffrys(x) x = Amoroso(0,, α, 0)) (34) If and α ar finit, thir xact valus ar irrlvant. If w tak th limit α but kp th product α = p constant thn w can obtain a varity of impropr powrlaw (Parson typ XI 0, fractal) distributions. PowrLaw(x p) x p (35) = lim Amoroso(0,, α, ( p)/α) α If p = 0 w obtain th half-uniform distribution ovr th positiv numbrs. Th normal (Gauss, Gaussian, bll curv) distribution can b obtaind in svral limits. For xampl, Normal(x µ, ) (36) { } = xp (x µ) π = lim α Amoroso (x µ, / α, α, 0) In th limit that w obtain an unboundd uniform distribution, and in th limit 0 w obtain a dlta function distribution. Proprtis ( ) n x ν E[ ] = Γ(α + n ) Γ(α) man = ν + Γ(α + ) Γ(α) [ Γ(α + varianc = ) Γ(α + ) Γ(α) Γ(α) ) Entropy = log Γ(α) + α + ( α ] ψ(α) (37) (38) (39) (40)

5 Indx of distributions Distribution Equation χ.............................................. S chi χ...................................... S chi-squar Γ.......................................... S gamma Amaroso...........................................(a) bll curv.................................. S normal BHP...............................................(3) Bramwll-Holdsworth-Pinton................. S BHP chi.................................................() chi-squar...........................................(7) chi-squard.............................. S chi-squar Coal-McNil...............S gnralizd log-gamma dlta..............................................(36) doubly xponntial........................ S Gumbl Erlang......................................S gamma xponntial........................................ (8) xtrm valu typ N....... S Fishr-Tipptt typ N Fishr-Tipptt typ I...................... S Gumbl Fishr-Tipptt typ II...................... S Frécht Fishr-Tipptt typ III..................... S Wibull Fishr-Tipptt-Gumbl.................... S Gumbl fractal.................................. S powr law flat!.......................................s uniform Frécht........................................... (4) FTG....................... S Fishr-Tipptt-Gumbl gamma............................................. (6) Gaussian...................................S normal Gauss......................................S normal gnral gnralizd gamma............... S Amoroso gnralizd gamma................................. (5) gnralizd log-gamma............................ (33) gnralizd Gumbl............................... (8) gnralizd xtrm valu......................... (7) gnralizd Frécht................................(6) gnralizd invrs gamma..... S gnralizd gamma gnralizd normal...................... S Nakagami gnralizd Rayligh.....................S scald-chi gnralizd Wibull................................ (5) GEV.................... S gnralizd xtrm valu Gomprtz................................. S Gumbl Gumbl........................................... (9) Gumbl-Fishr-Tipptt.................... S Gumbl Gumbl typ N............. S Fishr-Tipptt typ N half-normal....................................... (3) half-gaussian..........................s half-normal half-uniform...................................... (35) hypr gamma.................. S gnralizd gamma invrs chi........................................ (8) invrs chi-squar................................. (7) invrs xponntial................................(0) invrs gamma.................................... (6) invrs Rayligh.................................. () invrs Wibull............................ S Frécht Jffrys........................................... (34) Lévy.............................................. () log-gamma........................................ (3) log-wibull................................s Gumbl March............................. S Parson typ V Nakagami.......................................... (4) normal............................................(36) Parson typ III................................... (3) Parson typ V.................................... () Parson typ X........................ S xponntial Parson typ XI........................ S powr law positiv dfinit normal................ S half-normal powr law.........................................(35) Rayligh.......................................... (4) Maxwll.......................................... (5) Maxwll-Boltzmann...................... S Maxwll shiftd xponntial................................. (9) scald chi.......................................... () scald chi-squar........................... S gamma scald invrs chi..................................(9) scald invrs chi-squar............s invrs gamma smi-normal........................... S half-normal standard Amoroso................................ (d) standard Gumbl................................. (30) strtchd xponntial............................. (0) uniform........................................... (36) Van dr Waals............................... S Lévy Vinna.......................................S Win Vinci............................. S Parson Typ V von Miss-Jnkinson......... gnralizd xtrm valu Wibull........................................... (3) Win....................................... S gamma Amoroso, Annali di Mathmatica, 3 (95). N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariat Distributions, vol. (Wily, Nw York, 994), nd d. 3 K. Parson, Philos. Trans. R. Soc. A (894). 4 K. Parson, Philos. Trans. R. Soc. A 97, 443 (90). 5 M. Abramowitz and I. A. Stgun, Handbook of Mathmatical Functions with Formulas, Graphs, and Mathmatical Tabls (Dovr, Nw York, 964). 6 K. Parson, Philos. Trans. R. Soc. A (893). 7 K. Parson, Philos. Trans. R. Soc. A 86, 343 (895). 8 E. W. Stacy, Ann. Math. Stat 33, 87 (96). 9 A. Dadpay, E. S. Soofi, and R. Soyr, J. Economtrics 38, 568 (007). 0 J. Lahrrèr and D. Sorntt, Eur. Phys. J. B, 55 (998). A. Glman, J. B. Carlin, H. S. Strn, and D. B. Rubin, Baysian Data Analysis (Chapman & Hall/CRC, Nw York, 004), nd d.

6 N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariat Distributions, vol. (Wily, Nw York, 995), nd d. 3 W. Wibull, J. Appl. Mch.-Trans. ASME 8, 93 (95). 4 S. T. Bramwll, P. C. W. Holdsworth, and J.-F. Pinton, Natur 396 (998). 5 S. T. Bramwll, K. Christnsn, J.-Y. Fortin, P. C. W. Holdsworth, H. J. Jnsn, S. Lis, J. M. Lópz, M. Nicodmi, J.-F. Pinton, and M. Sllitto, Phys. Rv. Ltt. 84, 3744 (000). 6 A. Coal and D. R. McNil, J. Amr. Statist. Assoc. 67, 743 (97). 7 R. Kanko, Dm. Rs. 9, 3 (003). 8 H. Jffrys, Thory of probability (Oxford Univrsity Prss, 948), nd d. 9 E. T. Jayns, Probability Thory: Th Logic of Scinc (Cambridg Univrsity Prss, Cambridg, 003). 0 K. Parson, Philos. Trans. R. Soc. A 6, 49 (96).