Part III Measures of Classification Accuracy for the Prediction of Survival Times

Similar documents
Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation

Survival Model Predictive Accuracy and ROC Curves

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements

Lecture 3. Truncation, length-bias and prevalence sampling

PhD course: Statistical evaluation of diagnostic and predictive models

arxiv: v1 [stat.me] 25 Oct 2012

Residuals and model diagnostics

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data

Lecture 7 Time-dependent Covariates in Cox Regression

Evaluating Predictive Accuracy of Survival Models with PROC PHREG

Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times

Lecture 5 Models and methods for recurrent event data

Introduction to Empirical Processes and Semiparametric Inference Lecture 01: Introduction and Overview

Survival Analysis Math 434 Fall 2011

Optimal Treatment Regimes for Survival Endpoints from a Classification Perspective. Anastasios (Butch) Tsiatis and Xiaofei Bai

c Copyright 2015 Chao-Kang Jason Liang

Introduction to Statistical Analysis

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL

MAS3301 / MAS8311 Biostatistics Part II: Survival

Biost 518 Applied Biostatistics II. Purpose of Statistics. First Stage of Scientific Investigation. Further Stages of Scientific Investigation

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Estimation of the Bivariate and Marginal Distributions with Censored Data

Survival Analysis. Lu Tian and Richard Olshen Stanford University

Application of the Time-Dependent ROC Curves for Prognostic Accuracy with Multiple Biomarkers

Survival analysis in R

Lecture 22 Survival Analysis: An Introduction

Exercises. (a) Prove that m(t) =

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model

The influence of categorising survival time on parameter estimates in a Cox model

Analysis of Longitudinal Data. Patrick J. Heagerty PhD Department of Biostatistics University of Washington

Semiparametric Estimation of Time-Dependent: ROC Curves for Longitudinal Marker Data

Distribution-free ROC Analysis Using Binary Regression Techniques

STATISTICAL METHODS FOR EVALUATING BIOMARKERS SUBJECT TO DETECTION LIMIT

Log-linearity for Cox s regression model. Thesis for the Degree Master of Science

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520

Evaluation of the predictive capacity of a biomarker

Proportional hazards regression

Power and Sample Size Calculations with the Additive Hazards Model

Statistical Methods for Alzheimer s Disease Studies

Survival analysis in R

Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials

Extensions of Cox Model for Non-Proportional Hazards Purpose

Joint Modeling of Longitudinal Item Response Data and Survival

Longitudinal + Reliability = Joint Modeling

Checking model assumptions with regression diagnostics

NONPARAMETRIC ADJUSTMENT FOR MEASUREMENT ERROR IN TIME TO EVENT DATA: APPLICATION TO RISK PREDICTION MODELS

Longitudinal breast density as a marker of breast cancer risk

DAGStat Event History Analysis.

Survival Analysis: Weeks 2-3. Lu Tian and Richard Olshen Stanford University

Joint longitudinal and time-to-event models via Stan

Support Vector Hazard Regression (SVHR) for Predicting Survival Outcomes. Donglin Zeng, Department of Biostatistics, University of North Carolina

Tied survival times; estimation of survival probabilities

TMA 4275 Lifetime Analysis June 2004 Solution

Survival Analysis. Stat 526. April 13, 2018

University of California, Berkeley

Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring

Partly Conditional Survival Models for Longitudinal Data

Quantile Regression for Residual Life and Empirical Likelihood

Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects

Estimation of Conditional Kendall s Tau for Bivariate Interval Censored Data

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates

STAT Sample Problem: General Asymptotic Results

FULL LIKELIHOOD INFERENCES IN THE COX MODEL

The Weibull Distribution

Survival Analysis I (CHL5209H)

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology

Machine Learning Linear Classification. Prof. Matteo Matteucci

Estimating Optimum Linear Combination of Multiple Correlated Diagnostic Tests at a Fixed Specificity with Receiver Operating Characteristic Curves

Product-limit estimators of the survival function with left or right censored data

Analysing geoadditive regression data: a mixed model approach

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data

Müller: Goodness-of-fit criteria for survival data

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models

Goodness-Of-Fit for Cox s Regression Model. Extensions of Cox s Regression Model. Survival Analysis Fall 2004, Copenhagen

Building a Prognostic Biomarker

STAT331. Cox s Proportional Hazards Model

Multivariate Survival Analysis

Ph.D. course: Regression models. Introduction. 19 April 2012

Statistics in medicine

STAT 526 Spring Final Exam. Thursday May 5, 2011

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics

Ph.D. course: Regression models. Regression models. Explanatory variables. Example 1.1: Body mass index and vitamin D status

Survival Regression Models

GOODNESS-OF-FIT TESTS FOR ARCHIMEDEAN COPULA MODELS

Typical Survival Data Arising From a Clinical Trial. Censoring. The Survivor Function. Mathematical Definitions Introduction

Lecture 9. Statistics Survival Analysis. Presented February 23, Dan Gillen Department of Statistics University of California, Irvine

General Regression Model

Data splitting. INSERM Workshop: Evaluation of predictive models: goodness-of-fit and predictive power #+TITLE:

Extensions of Cox Model for Non-Proportional Hazards Purpose

Classification. Classification is similar to regression in that the goal is to use covariates to predict on outcome.

Survival Prediction Under Dependent Censoring: A Copula-based Approach

Monitoring clinical trial outcomes with delayed response: incorporating pipeline data in group sequential designs. Christopher Jennison

Frailty Modeling for clustered survival data: a simulation study

Likelihood Construction, Inference for Parametric Survival Distributions

Section IX. Introduction to Logistic Regression for binary outcomes. Poisson regression

Analysis of competing risks data and simulation of data following predened subdistribution hazards

Package Rsurrogate. October 20, 2016

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?

Ph.D. course: Regression models

Transcription:

Part III Measures of Classification Accuracy for the Prediction of Survival Times Patrick J Heagerty PhD Department of Biostatistics University of Washington 102 ISCB 2010

Session Three Outline Examples Breast Cancer Cytology Data Mayo PBC Data Cystic Fibrosis Foundation Registry Data Previous approaches ROC overview TP, FP for survival outcomes ROC C/D t (p) ROC I/D t (p), AUC(t), and concordance, C τ ROC(p) interpretation and dynamic criteria, c p (t) Further work 103 ISCB 2010

Example: Comparing cytometry measures Breast Cancer among Younger Women N = 253 women BC diagnosed aged 20 to 44 Endpoint: time-until-death (any cause) Cytometry measurements: old (S-phase ungated) new (S-phase gated) Goal: compare measures as predictors of mortality Heagerty, Lumley & Pepe (2000) 104 ISCB 2010

New versus Old Method %S Gated 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 %S Ungated 105 ISCB 2010

Predictive Survival Models Mayo PBC Data N = 312 subjects, 125 deaths, 1974-1986 Baseline measurements: bilirubin, prothrombin time, albumin Goal: predict mortality; medical management 106 ISCB 2010

107 ISCB 2010

Predictive Survival Models Cystic Fibrosis Data N = 23, 530 subjects, 4, 772 deaths, 1986-2000 n = 160, 005 longitudinal observations Longitudinal measurements: FEV1, weight, height Goal: predict mortality; transplantation selection 108 ISCB 2010

907762 914421 931885 930200 918755 904750 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 age 906580 age 922747 age 913076 age 923143 age 922295 age 922858 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 age 928943 age 925274 age 905506 age 925198 age 912910 age 930735 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 age 927419 age 908675 age 916766 age 926609 age 920366 age 927349 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 fev1 0 20 60 100 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 age age age 108-1 ISCB 2010 age age age

Accuracy: Some proposals R 2 Generalizations Korn and Simon (1990) Schemper and Henderson (2000) O Quigley and Xu (2001) TP, FP, ROC Generalizations Etzioni et al (1999); Slate and Turnbull (1999) Heagerty, Lumley, and Pepe (2000) Heagerty and Zheng (2005) 109 ISCB 2010

Some Comments Schemper and Henderson (2000), p 249: Consequently, there have been a number of attempts to develop measures akin to R 2 for Cox proportional hazards models [[references]], though as yet, none have been generally accepted These versions of R 2 are not about variance in T They focus on average variances of the counting process: N(t) = 1(T t) 110 ISCB 2010

Some Comments Natural to think of survival through counting process N(t) Common to use ROC curves for logistic regression / binary classification Q: Extend classification error rate concepts to survival data? 111 ISCB 2010

Components of Accuracy Calibration Bias does observed match predicted? Evaluated graphically and formally Discrimination Does prediction separate subjects with different risks? Evaluated qualitatively based on K-M plots Harrell, Lee and Mark (1996) 112 ISCB 2010

BC Survival: New Measurement (gated) (a) Survival for %S, Gated 00 02 04 06 08 10 %S: [00, 2 ), N= 86 %S: [ 2, 6 ), N= 86 %S: [ 6, 100), N= 81 0 50 100 150 113 ISCB 2010

BC Survival: Old Measurement (ungated) (b) Survival for %S, Ungated 00 02 04 06 08 10 %S: [00, 11 ), N= 86 %S: [ 11, 35 ), N= 86 %S: [ 35, 100), N= 81 0 50 100 150 114 ISCB 2010

Binary Classification Sensitivity True Positive BINARY TEST : P (T + D = 1) CONTINUOUS MARKER : P (M > c D = 1) Specificity True Negative BINARY TEST : P (T D = 0) CONTINUOUS MARKER : P (M c D = 0) 115 ISCB 2010

ROC Curve An ROC curve plots the True Positive Rate, TP(c), versus the False Positive Rate, FP(c) for all possible cutpoints, c: FP(c) = P (M > c D = 0) TP(c) = P (M > c D = 1) ROC Curve : [ F P (c), T P (c) ] c 116 ISCB 2010

Marker versus Disease status ROC curve -2-1 0 1 2 sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1-specificity 0 1 117 ISCB 2010

Marker versus Disease status ROC curve -2-1 0 1 2 sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1-specificity 0 1 117-1 ISCB 2010

Marker versus Disease status ROC curve -2-1 0 1 2 sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1-specificity 0 1 117-2 ISCB 2010

Marker versus Disease status ROC curve -2-1 0 1 2 sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1-specificity 0 1 117-3 ISCB 2010

Marker versus Disease status ROC curve -2-1 0 1 2 sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1-specificity 0 1 117-4 ISCB 2010

Marker versus Disease status ROC curve -2-1 0 1 2 sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1-specificity 0 1 117-5 ISCB 2010

Marker versus Disease status ROC curve -2-1 0 1 2 sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1-specificity 0 1 117-6 ISCB 2010

Marker versus Disease status ROC curve -2-1 0 1 2 sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1-specificity 0 1 117-7 ISCB 2010

Marker versus Disease status ROC curve -2-1 0 1 2 sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1-specificity 0 1 117-8 ISCB 2010

Marker versus Disease status ROC curve -2-1 0 1 2 sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1-specificity 0 1 117-9 ISCB 2010

ROC Curves 1 Compare different markers over full spectrum of error combinations 2 Compare sensitivity when controlling specificity (eg TP when FP=10%) 3 AUC interpretation: For a randomly chosen case and control, the area under the ROC curve is the probability that the marker for the case is greater than the marker for the control 4 AUC is a marker-outcome concordance summary 118 ISCB 2010

Does a (repeated) measurement predict onset? Q: Can a measurement accurately predict which CASES will experience an event (soon)? eg FEV1 eg death time Q: Can a measurement be used to accurately guide longitudinal treatment decisions? eg lung transplantation 119 ISCB 2010

Classification Errors True Positive Rate P ( high measurement CASE ) False Positive Rate P ( high measurement CONTROL ) 120 ISCB 2010

Issues Related to Time Q: When is the measurement taken? At baseline: Y (0) At a follow-up time t: Y (t) Q: What time is used to determine when someone is a CASE or a CONTROL? Case = event (disease, death) before time t Case = event (disease, death) at time t Control = event-free through time t Control = event-free through a large follow-up time t 121 ISCB 2010

Our approaches measurement case control Heagerty, Lumley & Pepe (2000) baseline T t T > t Zheng & Heagerty (2004) longitudinal T = t T > t Heagerty & Zheng (2005) baseline T = t T > t Zheng & Heagerty (2007) longitudinal T t T > t Saha & Heagerty (2010) longitudinal T = t, δ = j T > t 122 ISCB 2010

Sensitivity and Specificity for Survival Let T denote the survival time, and let N(t) denote the counting process for the uncensored outcome: N(t) = 1(T t) Possible definitions: CASE(t) : CONTROL(t) : Cumulative N(t) = 1 Incident dn(t) = 1 Static N(t ) = 0 Dynamic N(t) = 0 Where t is a fixed large time, t >> t 123 ISCB 2010

HLP(2000) 0 1 2 3 4 5 6 7 8 9 10 Time ZH(2004) 0 1 2 3 4 5 6 7 8 9 10 Time HZ(2005) 0 1 2 3 4 5 6 7 8 9 10 Time ZH(2007) 0 1 2 3 4 5 6 7 8 9 10 Time 124 ISCB 2010

[1] Sensitivity and Specificity for Survival Define: Heagerty, Lumley & Pepe (2000) sensitivity C (c, t) : P (M > c T t) P (M > c N(t) = 1) specificity D (c, t) : P (M c T > t) P (M c N(t) = 0) T P C t (c) = P (M > c N(t) = 1) F P D t (c) = P (M > c N(t) = 0) 125 ISCB 2010

[1] Time-dependent ROC Curve An Cumulative/Dynamic ROC curve shows the ability of a marker to separate the cumulative cases through time t (eg T t) from the controls at time t (eg T > t) Define curve [ p, ROC C/D t (p) ]: ROC C/D t (p) = T P C { [F P D ] 1 (p) } = T P C (c p ) where c p : p = F P D (c p ) Define AUC as: AU C(t) = ROC C/D t (p) dp 126 ISCB 2010

Estimation: NNE for S(m, t) With censored times a valid ROC solution can be provided by using an estimator of the bivariate distribution function for [M, T ] Define: S(c, t) = P [M > c, T > t] S(c, t) = c S(t M = u)df M (u) where F M (u) is the distribution function for M 127 ISCB 2010

Akritas (1994): Ŝ λn (c, t) = 1 n Ŝ λn (t M = M i )1(M i > c) i where Ŝλ n (t M = M i ) is a suitable estimator of the conditional survival function characterized by a smoothing parameter λ n 128 ISCB 2010

Estimation: NNE for S(m, t) Define: P λn [M > c N(t) = 1] = {[1 F M (c)] Ŝλ n (c, t)} {1 Ŝλ n (t)} P λn [M c N(t) = 0] = 1 Ŝλ n (c, t) Ŝ λn (t) where Ŝλ n (t) = Ŝλ n (, t) For NNE λ n = O(n 1/3 ) sufficient for weak consistency Results from Akritas (1994) and van de Vaart and Wellner (1996) imply that the bootstrap can be used for inference 129 ISCB 2010

(a) ROC(40m), NNE (b) ROC(60m), NNE (c) ROC(100m), NNE sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1 specificity 00 02 04 06 08 10 (d) ROC(40m), Kaplan Meier sensitivity 00 02 04 06 08 10 sensitivity 00 02 04 06 08 10 1 specificity sensitivity 00 02 04 06 08 10 sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 1 specificity (e) ROC(60m), Kaplan Meier (f) ROC(100m), Kaplan Meier sensitivity 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 1 specificity 1 specificity 1 specificity 130 ISCB 2010

Accuracy Comparisons Sensitivity Using gated (new) measurement: P [M 1 54 N(60m) = 0] = 071 P [M 1 > 54 N(60m) = 1] = 082 Using ungated (old) measurement: P [M 2 35 N(60m) = 0] = 071 P [M 2 > 35 N(60m) = 1] = 054 Therefore, controlling M 1 and M 2 to have equal specificity, the new measure, M 1, has a greater sensitivity 131 ISCB 2010

Accuracy Comparisons AUC Calculations AUC for gated (new): 080, Bootstrap 95% CI: (072,089) AUC for ungated (old): 068, Bootstrap 95% CI: (056,077) 95% CI for difference in areas (new-old): (003, 026) 132 ISCB 2010

Summary Define time-dependent ROC curves based on prospective data and cumulative occurence of events Local survival estimation handles censored event times Tool to evaluate a marker or a survival regression model score R package: survivalroc (see web for doc/validation) Alternative definitions? More general longitudinal marker scenario? Heagerty, Lumley and Pepe (2000) Time-dependent ROC Curves for Censored Survival Data and a Diagnostic Marker Biometrics 133 ISCB 2010

[2] Sensitivity and Specificity for Survival Define: Heagerty & Zheng (2005) sensitivity I (c, t) : P (M > c T = t) P (M > c dn(t) = 1) specificity D (c, t) : P (M c T > t) P (M c N(t) = 0) T P I t (c) = P (M > c dn(t) = 1) F P D t (c) = P (M > c N(t) = 0) 134 ISCB 2010

[2] Time-dependent ROC Curve An Incident/Dynamic ROC curve shows the ability of a marker to separate the cases (T = t) from the controls (T > t) within a (potential) risk-set (T t) Define curve [ p, ROC I/D t (p) ]: ROC I/D t (p) = T P I { [F P D ] 1 (p) } = T P I (c p ) where c p : p = F P D (c p ) Define AUC as function of time: AU C(t) = ROC I/D t (p) dp 135 ISCB 2010

log normal survival example Marker 2 1 0 1 2 025 RHO = 08 02 015 01 005 2 1 0 1 2 log(time) 136 ISCB 2010

log-normal survival example AT RISK Marker -2-1 0 1 2 CASE CONTROL -2-1 0 1 2 log(time) 136-1 ISCB 2010

I/D ROC curve for log normal sensitivity 00 02 04 06 08 10 log(t) = 15 00 02 04 06 08 10 1 specificity 137 ISCB 2010

log-normal survival example AT RISK Marker -2-1 0 1 2 CASE CONTROL -2-1 0 1 2 log(time) 137-1 ISCB 2010

log-normal survival example AT RISK Marker -2-1 0 1 2 CASE CONTROL -2-1 0 1 2 log(time) 137-2 ISCB 2010

log-normal survival example AT RISK Marker -2-1 0 1 2 CASE CONTROL -2-1 0 1 2 log(time) 137-3 ISCB 2010

log-normal survival example AT RISK Marker -2-1 0 1 2 CASE CONTROL -2-1 0 1 2 log(time) 137-4 ISCB 2010

log-normal survival example AT RISK Marker -2-1 0 1 2 CASE CONTROL -2-1 0 1 2 log(time) 137-5 ISCB 2010

I/D ROC curves for log normal sensitivity 00 02 04 06 08 10 log(t) = 15 log(t) = 1 log(t) = 05 log(t) = 0 log(t) = 05 log(t) = 1 00 02 04 06 08 10 1 specificity 138 ISCB 2010

AUC(t) and Concordance Q: The I/D ROC curve and AUC(t) provide time-specific summaries of accuracy, but is there a single global summary? Concordance: C = P (M j > M k T j < T k ) C = t AUC(t) w(t) dt with w(t) = 2 f(t) S(t) 139 ISCB 2010

AUC(t) and Concordance Time can be restricted to (0, τ) to obtain: C τ = P (M j > M k T j < T k, T j < τ) = τ 0 AUC(t) w τ (t) dt with w τ (t) = w(t)/[1 S 2 (τ)] C is directly related to Kendall s tau, K: Korn and Simon (1990) Harrell, Lee and Mark (1996) C = K/2 + 1/2 140 ISCB 2010

AUC(t) curves for log normal AUC(t) 05 06 07 08 09 10 w(t) rho = 09, C = 083 rho = 08, C = 078 rho = 07, C = 074 rho = 06, C = 070 005 010 050 100 500 1000 time 141 ISCB 2010

Estimation: Issues F Pt D (c) = P (M > c T > t) can be estimated non-parametrically for times when i R i(t) moderate-to-large, where R i (t) = 1(Ti > t), at-risk indicator However, estimation of T P I t (c) = P (M > c T = t) requires some sort of smoothing since the observed subset with T i = t may only contain one observation Essentially we are interested in regression quantiles for the marker as a function of time, T = t, but T may be censored (coarsened covariate) The hazard can be used as a bridge to estimate T P I t (p) 142 ISCB 2010

Estimation: Proportional Hazards Assume: (M i, T i, i) iid T i = min(t i, C i ), i = 1(T i < C i ) Independent censoring, C i No assumption for marker distribution Hazard Model: λ(t M i ) = λ 0 (t) exp(γ M i ) 143 ISCB 2010

Estimation: Proportional Hazards To estimate F P D t (c) we use the empirical distribution for the control set (T > t): F P D t (c) = i 1 n t R i (t+) 1(M i > c) where R i (t+) = 1(T i > t), n t = i R i (t+) 144 ISCB 2010

Estimation: Proportional Hazards To estimate T P I t (c) we use the exponential tilt of the empirical distribution for the risk set (T t): T P I t(c) = i π i (t, γ) 1(M i > c) where π i (t, γ) = R i (t) exp(γ M i )/W t W t = i R i (t) exp(γ M i ), R i (t) = 1(T i t) Xu and O Quigley (2000) show that the weights, π i (t, γ), applied to the risk set provide consistent estimation of P (M i > c T i = t) Partial likelihood connections: E(M T = t) 145 ISCB 2010

Estimation: Hazard as Bridge A general definition for the hazard is Then using a little algebra yields λ(t M i ) = P (T i = t M i ) P (T i t M i ) P (M i = m T i = t) λ(t M i = m) P (M i = m T i t) 146 ISCB 2010

Estimation: Hazard as Bridge A general definition for the hazard is Then using a little algebra yields λ(t M i ) = P (T i = t M i ) P (T i t M i ) P (M i = m T i = t) λ(t M i = m) }{{} P (M i = m T i t) }{{} Estimate = Smooth model + Empirical 146 ISCB 2010

Estimation: non-ph Estimation assuming PH can be relaxed using a varying coefficient model: Estimation of γ(t) λ(t M i ) = λ 0 (t) exp[γ(t) M i ] Hastie and Tibshirani (1993) Cai and Sun (2003) [local linear MPLE] simple smoothing of scaled Schoenfeld residuals Only assumes smooth hazard ratios, and linearity in M Linearity in M can be relaxed using functions f(m) 147 ISCB 2010

Estimation: non-ph Only the estimate of T P I t (c) is modified: T P I t(c) = i π i [t, γ(t)] 1(M i > c) where π i [t, γ(t)] = R i (t) exp[γ(t) M i ]/W t W t = i R i (t) exp[γ(t) M i ] 148 ISCB 2010

Some Simulations Data (M i, log T i ) were generated as bivariate normal with a correlation of ρ = 07 The sample size for each simulated data set was N = 200 The AUC(t) curve and the integrated curve, C τ, was estimated using: maximum likelihood assuming a bivariate normal model Cox model which assumes proportional hazards local maximum partial likelihood for the varying-coefficient model λ(t) = λ 0 (t) exp[γ(t) M i ] local linear smooth of the scaled Schoenfeld residuals to estimate the varying-coefficient model 149 ISCB 2010

AUC(t) Estimated Using Local-linear MPL AUC(t) 05 06 07 08 09 10 2 1 0 1 2 log(time) 150 ISCB 2010

40% Censoring MLE Cox model local MPLE residual smooth log time AU C(t) mean (sd) mean (sd) mean (sd) mean (sd) -20 0884 0884 (0019) 0749 (0031) 0859 (0054) 0875 (0048) -15 0833 0834 (0021) 0742 (0029) 0818 (0035) 0827 (0037) -10 0782 0782 (0021) 0732 (0026) 0770 (0035) 0772 (0035) -05 0734 0734 (0020) 0722 (0024) 0724 (0038) 0722 (0039) 00 0693 0693 (0019) 0712 (0024) 0689 (0042) 0687 (0041) 05 0660 0660 (0018) 0702 (0026) 0654 (0045) 0655 (0043) 10 0634 0635 (0016) 0689 (0035) 0633 (0057) 0637 (0048) 15 0614 0614 (0015) 0653 (0055) 0617 (0075) 0614 (0051) 20 0598 0599 (0013) 0560 (0073) 0555 (0075) 0546 (0058) C τ 0741 0741 (0017) 0727 (0022) 0740 (0021) 0742 (0021) 151 ISCB 2010

Illustration: PBC Data Marker, M i, derived as linear predictor from Cox model: Covariate estimate se Z log(bilirubin) 0877 0099 887 log(prothrombin time) 3015 1033 294 edema 0785 0300 262 albumin -0944 0237-399 age 0092 0024 388 Accuracy evaluated using λ 0 (t) exp[γ(t) M i ] local-linear MPLE for γ(t) (5) predictor model compared to (4) predictor excluding bilirubin 152 ISCB 2010

I/D ROC curves for PBC model score sensitivity 00 02 04 06 08 10 year = 1 year = 2 year = 3 year = 4 year = 5 00 02 04 06 08 10 1-specificity 152-1 ISCB 2010

Illustration: PBC Data AUC based on Varying-Coefficient Cox model AUC 04 05 06 07 08 09 10 w(t) 5 covariates: iauc = 0805 4 covariates: iauc = 0719 0 500 1000 1500 2000 2500 3000 Time (days) 153 ISCB 2010

Summary Extension of ROC concepts to risk sets Estimation based on hazard model Varying coefficient simple methods look promising All summaries can be obtained from routine Cox model output Criterion for marker and/or model comparison Separation of marker generation and marker evaluation Note: R 2 for PBC data estimated as 032 (max possible 098) Heagerty and Zheng (2005) Survival Model Predictive Accuracy and ROC Curves Biometrics 154 ISCB 2010

Extension to Longitudinal Markers TP, FP based on longitudinal marker T P I t (c) = P [M(t) > c T = t] F P D t (c) = P [M(t) > c T > t] No simple concordance, but AUC(t) w(t)dt Dynamic criterion, c p (t), controls specificity c p (t) : p = P [M(t) > c p (t) T > t] Summary ROC curve shows total percent test positive when controlling FP using dynamic criterion 155 ISCB 2010

156 ISCB 2010

Illustration: CFF Data and Longitudinal Markers Split sample (development / validation) Time-dependent covariate Cox model Covariate estimate se Z fev1-00868 00022-4003 fev1(t2) 00535 00062 865 fev1(t3) 00282 00118 240 gender 01235 00459 269 weightz -04334 00382-1134 heightz -00603 00299-202 Accuracy evaluated using λ 0 (t) exp[γ(t) M i (t)] Measurement spacing: median = 100, Q1 = 087, Q3 = 122 157 ISCB 2010

CFF Survival Survival 00 02 04 06 08 10 0 10 20 30 40 50 Time 158 ISCB 2010

Incident / Dynamic ROC for CFF Data True Positive Rate 00 02 04 06 08 10 Age 10 Age 15 Age 20 Age 25 Age 30 00 02 04 06 08 10 False Positive Rate 159 ISCB 2010

Summary Survival ROC Curve Dynamic criterion Saha and Heagerty (manuscript) c p (t) : p = P [M(t) > c p (t) T > t] Q: If a fixed time-dependent FP rate of p is used then what percent of cases will test positive at the appropriate time? Total Sensitivity = P [M(t) > c p (t) T = t] P [T = t]dt ROC(p) = E T [ ROC I/D T (p) ] t Note: Consider a time lag, L, such that the marker used to model the hazard is M(t L) This leads to test positive L units before failure 160 ISCB 2010

Time (years) model score 10 20 30 40 50 2 0 2 4 6 Threshold functions for FP = 001, 005, and 010 161 ISCB 2010

Summary Survival ROC for CFF Data sensitivity 00 02 04 06 08 10 fev1, weight weight 00 02 04 06 08 10 1 specificity 162 ISCB 2010

AUC(t) for CFF Data AUC(t) 05 06 07 08 09 10 10 20 30 40 50 Time 163 ISCB 2010

Summary Accuracy summary ROC I/D t (p) : vary (M,t) AU C(t) : vary (t) ROC(p) : vary (M) C : global 164 ISCB 2010

Summary Longitudinal data as predictors of an event time Accuracy using sequential binary classification Connections to partial likelihood Software R code survivalroc R code risksetroc Now: Inference Future: Relax strong censoring assumption 165 ISCB 2010