Chapter 4: Motion in Two Dimensions Part-1

Similar documents
Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

PHY2053 Summer C 2013 Exam 1 Solutions

Physics 120 Spring 2007 Exam #1 April 20, Name

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

( ) ( ) ( ) ( ) ( ) ( ) j ( ) A. b) Theorem

Rotations.

Physics 15 Second Hour Exam

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 6 Plane Motion of Rigid Bodies

Uniform Circular Motion

Physics 207, Lecture 3

Physics 201, Lecture 5

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

ME 141. Engineering Mechanics

LECTURE 5. is defined by the position vectors r, 1. and. The displacement vector (from P 1 to P 2 ) is defined through r and 1.

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

Physics 201 Lecture 2

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis.

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

PHYS 1443 Section 001 Lecture #4

EGN 3321 Final Exam Review Spring 2017

Ch.4 Motion in 2D. Ch.4 Motion in 2D

Physics 101 Lecture 4 Motion in 2D and 3D

Physics 201 Lecture 3. dx v x. l What was the average velocity? l Two legs with constant velocity but. l Average velocity:

Classification of Equations Characteristics

s = rθ Chapter 10: Rotation 10.1: What is physics?

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

Chapter 2 Linear Mo on

Lecture 3 summary. C4 Lecture 3 - Jim Libby 1

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction

HERMITE SERIES SOLUTIONS OF LINEAR FREDHOLM INTEGRAL EQUATIONS

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T.

1. Kinematics of Particles

3 Motion with constant acceleration: Linear and projectile motion

On Fractional Operational Calculus pertaining to the product of H- functions

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

T h e C S E T I P r o j e c t

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

Physics 201 Lecture 4

Physics 110. Spring Exam #1. April 23, 2008

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.

Motion on a Curve and Curvature

P a g e 5 1 of R e p o r t P B 4 / 0 9

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

Introduction. Voice Coil Motors. Introduction - Voice Coil Velocimeter Electromechanical Systems. F = Bli

Use 10 m/s 2 for the acceleration due to gravity.

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

Reinforcement learning

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Physics 201 Lecture 15

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. ( (3 dim) ( (1 dim) dt. Equations of Motion (Constant Acceleration) Newton s Law and Weight. Magnitude of the Frictional Force

4.8 Improper Integrals

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm

Chapter I Vector Analysis

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006

MODEL SOLUTIONS TO IIT JEE ADVANCED 2014

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

CHAPTER 10: LINEAR DISCRIMINATION

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data

2-d Motion: Constant Acceleration

Physics 232 Exam I Feb. 13, 2006

Available online Journal of Scientific and Engineering Research, 2017, 4(2): Research Article

THIS PAGE DECLASSIFIED IAW EO 12958

Chapters 2 Kinematics. Position, Distance, Displacement

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

Example: Two Stochastic Process u~u[0,1]

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

(3.2.3) r x x x y y y. 2. Average Velocity and Instantaneous Velocity 2 1, (3.2.2)

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN

Name of the Student:

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

1.B Appendix to Chapter 1

1 Constant Real Rate C 1

Energy Dissipation Gravitational Potential Energy Power

Section 35 SHM and Circular Motion

β A Constant-G m Biasing

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week.

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Lecture 5. Plane Wave Reflection and Transmission

Field due to a collection of N discrete point charges: r is in the direction from

( ) α is determined to be a solution of the one-dimensional minimization problem: = 2. min = 2

e t dt e t dt = lim e t dt T (1 e T ) = 1

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

D zone schemes

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

Average & instantaneous velocity and acceleration Motion with constant acceleration

Motion in a Straight Line

Chapter 4 Kinematics in Two Dimensions

Transcription:

Lecue 4: Moon n Two Dmensons Chpe 4: Moon n Two Dmensons P- In hs lesson we wll dscuss moon n wo dmensons. In wo dmensons, s necess o use eco noon o descbe phscl qunes wh boh mnude nd decon. In hs chpe, we wll ben b denn dsplcemen, eloc nd cceleon s ecos n wo dmensons. Then, we wll dscuss he soluon o pojecle moon poblems n wo dmensons, such s he moon o cnnon ed e n nle, he moon o cl de jumped sh o o he moon o nucle bomb dopped om he heh. In he s secon, some denons e en. In he second secon, deons o he equons o moon n wo-dmensons e shown. The equons o he unom speed ccul moon nd he non unom speed ccul moon e deed n he hd secon. In he ls secon, he ele moon n wo dmensons s conned. Anlcl nd numecl emples e soled he end o ech secon. Dsplcemen, Veloc nd Acceleon n -Dmensons As we menoned n -dmenson, he eco nue o eloc nd cceleon s ken no ccoun b he sn pose o nee o he qun. In -dmensons we mus use componens o spec eloc o cceleon eco. Th s he meel deence, n equons, whch m be enouh o mke somehn dcul! I hee s eco ln n he X-Y plne, cn be wen s componen n he X-decon dded o componen n he Y-decon. Le A be wo-componen eco n he X-Y plne. Then s wen s A A ˆ A ˆ j whee A nd A e he X nd Y componens o he eco A See Fue 4.-b. Fue 4.: Componens o eco Fom F. b, we see h A Acos nd Asn A, nd lso A A I hee wo ecos, hee wll be hd one whose mnude nd decon s ound b he eco opeon on he ohes. Le us cll C be he esuln eco o he ddon o A wh B. Then, s wen s; A

Lecue 4: Moon n Two Dmensons A C C C whee A ˆ A nd B B ˆ B C ˆ C A B A B ˆ A B C A B nd C A B. See Fue 4. o he epesenon. Fue 4.: Veco ddon, esuln eco nd he componens I s seen lso n Fue 4. h he esuln eco epesens chne n poson o n objec om pon A o pon B. So, he esuln eco s dsplcemen eco o n objec h moes om A o B. Dsplcemen In Fue 4.3, n objec s nll poson me pon A. Some me le,, he objec s poson pon B. The dsplcemen eco o he objec s en b: 4. ˆ j B A ˆ Fue 4.3: Dsplcemen eco

Lecue 4: Moon n Two Dmensons Aee Veloc Usn he esul o dsplcemen, we cn nd he ee eloc o he objec beween me nels: Tol Dsplcemen Elpsed Tme 4. Genell, he nl condons e ssumed o be pon. We wll use hs noon o he nl condon e h pon. As wh he -dmensonl denon, ee eloc s ndependen o he ph beween he end pons. Insnneous Veloc As s menoned n he peous chpe, he nsnneous eloc s en b d lm 4.3 d Aee Acceleon I s he chne n eloc oe he chne n me: 4.4 The decon o he cceleon s n he decon o he eco /., nd s mnude s Insnneous Acceleon As we he ollowed beoe, Insnneous cceleon s clculed b kn shoe nd shoe me nels,.e. when, hen; d lm 4.5 d Noe: pcle cn ccelee n deen ws:. The mnude o cn chne n me, whle he decon o moon ss he sme.. The mnude o,, cn s consn, whle he decon o moon chnes. Ths onl hppens n moe hn one dmenson. 3. Boh nd he decon o cn chne. Moon n D wh Unom Consn Acceleon We know h. 4.6 3

Lecue 4: Moon n Two Dmensons 4 In cse o unom cceleon, he ee cceleon would be equl o he nsnneous cceleon. Snce he denon o ee cceleon s s boe, hen he nsnneous cceleon m be wen s 4.7 Fom h equon, we cn we he eloc equon s. 4.8 As he moon s n -dmensonl spce, he un ecos lon nd -s wll be î nd ĵ, especel. So kn he ecnul componens o cceleon een s unom! nd he nl eloc, we e j ˆ ˆ. 4.9 Ths s he equon o eloc o n objec wh unom cceleon n -dmensonl moon. Noe h he sub-ndces nd show he nl lues o he pmees lon he -s nd -s. The poson eco o he objec s wen b usn Eq. 4., 4. Snce he eloc o he objec nceses unoml, hen we cn we 4. s we he done n he peous Chpe. Replcn hs esul no he Eq. 4., hen we e he poson eco o he objec n ems o eloc nd cceleon: 4. nd snce he nl eloc s en s n Eq. 4.8, hen he esul o he poson eco n ems o he nl lues cn be en s. 4.3 I s noed h ll bles e n -dmenson. Fo smplc hs equon m be wen s ollows b compn he coecen o î nd ĵ. Snce 4.4 hen 4.5

Lecue 4: Moon n Two Dmensons whee he sub-ndces nd show he nl lues o he pmees lon he -s nd -s, n. Pojecle Moon As we know well, he pojecle moon s pcul knd o dmensonl moon. Fsl, we wll mke he ollown ssumpons: The onl oce pesen s he oce due o. The mnude o he cceleon due o s 9.8m / s. We choose coodne ssem n whch he pose -s pons up pependcul o he eh's suce. Ths denon es us h ˆ j 9.8m / s nd. The oon o he eh does no ec he moon. Inl Condons: We choose he coodne ssem so h he pcle lees he on, me wh n nl eloc o. The Pocedue o Soln Pojecle Moon Poblems e s ollowns:. We wll sepe he moon no he hozonl p nd ecl p.. Then we wll consde ech p sepel usn he ppope equons. The equons o moon, o ech componen, become:. -moon =; I s seen om Eq. 4.9 h he -componen o he eloc wll onl he nl lue. So, ˆ 4.6 cos ˆ cons. ˆ cos ˆ b. -moon ˆ j 9.8m / s ; 4.6b I s seen h onl he onl oce s ppled on he moon o he bod ; hen he -componen o he eloc wll be en s sn 4.7 ˆ sn j ˆ j 4.7b We cn lso we he eloc equon h s me-ndependen s we he done n peous Chpe. 4.8 5

Lecue 4: Moon n Two Dmensons Noe h hs esul s obousl jus mnude. The decon o he eloc m be decded b he lues o he ls em, poson eco--, o he equon. 3. Fnll, we wll sole he esuln ssem o equons o he unknown qunes. I s lso woh o pcce on he esuls obned boe. I he me ble n Eq. 4.6b s nseed no he Eq. 4.7b, hen s seen h he poson equon o he objec becomes s pbolc equon. n 4.9 cos I mens h he ph o he objec n he pojecle moon s pbolc: b c 4. In he pojecle moon, hee wll be nl dsnce on he -s he objec es. I he Eq. 4.9 s soled o when =, hen he ne o pojecle s ound h sn R 4. I s obous h 45 o he m ne, R m. The m heh h he objec eches cn be ound b usn he Eq. 4.8. Snce he ecl eloc wll be when he objec eches he hhes heh, hen, nd sn, hen sn sn m s ound, see Fue. m, nll 4. Fue 4.4: The pojecle moon The ol me o ll hese moon s ound b usn Eq. 4.7. Snce he eloc o he objec s zeo me when eches he hhes pon bu he hozonl eloc hs some mnude, hen we cn we ˆ j sn 4.3 hen sn 4.4 6

Lecue 4: Moon n Two Dmensons Ths s he me epesson o he objec h hs eched he hhes pon, A, whee he ecl componen o he eloc s zeo. I s seen h kes some me o h objec lln om pon A o B snce he pojecle does pbolc ph. So, he ol me o he pojecle o ech om o B n pbolc ph s sn T 4.5 Emples nd Poblems Queson 4.: A bombdmen c hn eloc o 8m/h lees s bomb wh 3 nle downwd n hozonl lne. The hozonl dsnce beween he pon he bomb leed nd he pon whee hs he ound s 7m. Fnd he heh whch he c lees he bomb nd b Fnd he lh me o he bomb. Soluon 4.: We e en: 8m / h 8.5m / s, 3, 7m, The pon whee he bomb s leed s ssumed o be pon. Then ˆ ˆ, sn sn ˆ j j j nd cos cos I we eplce n he equon o heh, hen j ˆ j ˆ sn ˆ, j hen j ˆ sn cos cos The soluon o he s equon o he unknown,, es us h 9 Ths mens h he bomb oes downwd ecll. To nd he me o he bomb o ech he ound s 7m. 5s cos 8.5m / scos3 7

Lecue 4: Moon n Two Dmensons Queson 4.: Assume h ou oun sse swns on ope boe he locl swmmn hole on ho d n he summe hold See Fue 4.5. She les o o he ope when he nl eloc s.5 m/s n nle o 35. boe he hozonl. I he lh n kes o. s, how hh boe he we ws she when she le o o he ope? Soluon 4.: We e en:.5m / s 35 Flh. s Fsl, we should nd he eloc ecos n nd - decons: sn.5sn35 cos ˆ.5cos35ˆ.76m / s ˆ j.679m / sˆ A he end o he lh me, she wll ene no he we. Snce he nl heh s hen he ol dsplcemen n he ecl poson s jus j ˆ j ˆ sn ˆ j hen Fue 4.5: Swnn l on ope boe we sn ˆ Flh j ˆ Flh j Whee he eloc eco s ken + snce he moon s 35 upwd nll. Then j ˆ Flh Flh j m s s ˆ.76 /. j 9.8m / s.s hen he nl heh s ound s ˆ j 4.64m ˆ j I should be noed h he esul mens h he moon s n - ecl decon! ˆ 8

Lecue 4: Moon n Two Dmensons P- Ccul Moon n Two Dmensons Unom Speed A pcle mon lon ccul ph consn speed s sd o be n unom ccul moon. As he pcle moes ound he ccle, s nul poson on he ccle chnes. So ben nen ech poson, he eloc eco s pependcul o he poson eco. Snce he speed o he pcle s consn o he s cse so h he mnude o he eloc s consn; bu he decon o he eloc eco s chnn om one poson o nohe poson s me oes. Theeoe such pe o moon hs n cceleon whose mnude emns consn bu decon chnes om one poson o nohe one. Ths cceleon s clled cenul cceleon. The deence beween cenpel nd cenul cceleons s que smple - cenul oces do no es whle cenpel cceleons do. As wh mos smple semens, hee s e del moe o undesndn hs ssue hn smpl memozn whch o he cceleons does o does no es. To undesnd he cenpel cceleon nd he cous cenul cceleon, le's s emne he wods cenpel nd cenul. cen s deed om he Ln cen menn "cene." pel s deed om he Ln peee menn "seek." ul s deed om he Ln uee menn "o lee" s n ue. So, lell, he cenpel cceleon s "cene-seekn" oce. The cous cenul cceleon s, lell, non-esn "cene-leen" cceleon. Le us mpose on pon-mss objec he condon h s on ccul ph n me. The eco eloc o hs objec s lws nen o he ccle heeoe chnes decon n me, s he objec moes lon he ccle. Consequenl, he ccul moon s cceleed moon, smpl becuse he decon o eco eloc chnes, een s mnude speed emns consn. The poblem now becomes o nd ou wh oce enees he cceleon h keeps he objec mon on ccle. Consde n nl objec poson A nd poson B whee he objec eches e me nel Fue 6. The eloc ecos A nd B e shown n he Fue s nd, especel. The c Fue 6: Dm o pon-mss objec mon lon ccul ph. o ccle eled b he objec n he me nel s clled s. Foce smplc, n hs emple, he mnude o eloc speed o be consn. Such moon o n objec on ccle, wh consn speed, s clled "unom ccul moon". An, such moon s n "cceleed moon" jus becuse he decon o he eco eloc chnes. Snce he objec dsplces s poson wh me, s dsplcemen chnes b n moun o n me. The e o chne o hs nul dsplcemen wh espec o me s en b w 4.6 nd hs chne s clled nul eloc. Fo he lm condon; d w lm w. 4.7 d Snce he nle chnes om o n me T, hen he nul eloc cn be wen s 9

Lecue 4: Moon n Two Dmensons w. T whee he T s he peod o he pcle h kes me o eoluon. So, he eoluon o second s wen s. T Ths s he equenc o he pcle obn ound cene. Then he nul eloc cn be wen s w. The lne eloc o he objec s wen s, s s w w. 4.8 w nd so h he elon beween he nul eloc nd he lne eloc s en b he equon w. 4.9 I should be noed h he lne eloc does no chne n decon; onl chnes n nul posons. Then s concluded h he lne eloc hs mnude o w bu s decon eco n emns consn. Becuse o hs, hee s jus mnude-elon beween w nd. Snce he cceleon,, s he chne n eloc oe me: 4.3 We noce h cceleon s eco,, mulpled b scl, /. So, he decon o he cceleon wll be he sme s he decon o he chne n eloc,. So wh s he eco "chne o eloc"? The "chne" n n phscl qun s dened s he nl qun mnus he nl qun. So, he chne n eloc s he nl eco eloc mnus he nl eco eloc: 4.3 Fue 7: Eluon o To nd he eco we phcll subc eco om eco Fue 7. Noe: o cl, we he moed he pons o on o boh ecos nd o common pon, ou o Fue 6. Remembe, snce eco s dened onl b mnude nd decon, s pon o on s elen. Fue 7 shows he eco n ed colo. We cn now nspo bck no he nl Fue Fue 6, pesen s mnude nd decon s en n Fue 7. Ae eecun hs opeon, we cll he Fue 8. So, we cn dw n Fue 8 ll hee ecos - blue, F- een, nd - ed pllel o ech ohe Hee, he F s he oce h s he subjec o ne Chpe.

Lecue 4: Moon n Two Dmensons I should be noced he decon o ll hese hee ecos; he e ll deced owd he cene o he ccle nd e, heeoe, "cene-seekn" o cenpel. Deon o n Anlc Epesson o Now, n ode o dee n nlc epesson o, we use he ollown pope o wo "sml" sosceles nles, s show n Fue 9: Fo he nles n Fue 6 nd Fue 7, hs elonshp s: Fue 8: Sme s Fue 6, shown he ecos F,, nd. Fue 9: The elon beween he sdes o "sml" sosceles nles. om whch: s 4.33 Dde hs equon b he me nel : hen s 4.34 4.35 Ths epesson epesens he mnude o cenpel cceleon. I we wn o epess hem s ecos, becomes: ˆ 4.36 whee -h epesens he "un eco" lon nd s obous h he cceleon hs mnus sn n decon. The cenpel cceleon s lon he nwd dus. I cn be seen n Fue 7 h s becomes smlle nd smlle hen s decon becomes nwd dus decs no he on!. In he Cesn coodnes, he bles cn be undesood moe esl s seen n Fue. s 4.3 Fue : Posonl eco dm o pon-mss objec mon lon ccul ph nd s nd - s componens.

Lecue 4: Moon n Two Dmensons The locon o he objec n momen h mens he equon o moon - ele o he cene o oon s en b ˆ cos ˆ sn 4.37 usn he Equon 4.6, hen cos wˆ sn w 4.38 whee nd j, wh he lle hs, e he un ecos n he nd -decons. The Eq. 4.38 s he equon o moon o he bod n he Cesn coodnes. The objec's eloc s esl ound b kn he dee o s locon wh espec o me: d d cos wˆ sn w d d wsn wˆ wcos w 4.39 Ths eloc s lws nen o he ccle o equlenl, s lws pependcul o poson eco,, nd The objec's cceleon s esl ound b kn he dee o s eloc wh espec o me: d d w w w cos wˆ cos wˆ d d wsn wˆ w sn w sn w wcos w 4.4 I s obousl seen h he decon o he objec's cceleon s oppose,.e., deced owds he cene o moon. Emples nd Poblems Queson 4.3: Wh s he cenpel cceleon o he selle obn 64km boe he Equo kes 98mn o one eoluon ound he eh? eh =637km Noe h he esul wll he hs heh! Soluon 4.3: We e en: h 64km, eh 637km 98mn 858s Snce he dus whch he selle obs s he dsnce o he selle o he cene o he eh, hen he ol dsnce o o he obn cene s 6 h eh 64 km 637km 7km 7. m hen he cceleon o he selle s

Lecue 4: Moon n Two Dmensons 4 7. 588s 4 6 m 8.m / s Queson 4.4: An objec obn unoml ound cene, hn dus o km, speds nle n.s.. Wh s he lne eloc o hs objec? b. Wh s he cceleon o he objec? c. Fnd he poson eco n nd componens o h objec o =s. Soluon 4.4: We e en:,.s, km Snce he objec dsplces deee n.second, hen * / 36 w w d / sec.. 36 Then he lne eloc w km* d / sec 36 74.45m / s 36 The cceleon s 74.45 3.43m / s The poson eco s en b cos wˆ sn w hen cos ˆ sn. 36 36 Fo he second, he poson eco componens e: cos *ˆ sn * 36 36. 984.8ˆ 73.65 So, =984.8m nd =73.65m 3