Operating parameters for representative BWR and PWR designs are given below. For the PWR hot channel and the BWR average channel compute and plot:

Similar documents
is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

. This is made to keep the kinetic energy at outlet a minimum.

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14

N J of oscillators in the three lowest quantum

LECTURE 5 Guassian Wave Packet

6. Negative Feedback in Single- Transistor Circuits

Lecture 2a. Crystal Growth (cont d) ECE723

Chapter 2 Linear Waveshaping: High-pass Circuits

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1

Magnetics Design. Faraday s law. Ampere s law


Fundamental concept of metal rolling

Chapter 2: Examples of Mathematical Models for Chemical Processes

120~~60 o D 12~0 1500~30O, 15~30 150~30. ..,u 270,,,, ~"~"-4-~qno 240 2~o 300 v 240 ~70O 300

Chapter 3. AC Machinery Fundamentals. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Lecture 26: Quadrature (90º) Hybrid.

Solution to HW14 Fall-2002

Topic 5: Discrete-Time Fourier Transform (DTFT)

Definition of Ablation testcase

Harmonic Motion (HM) Oscillation with Laminar Damping

Lecture 27: The 180º Hybrid.

In this lecture... Subsonic and supersonic nozzles Working of these nozzles Performance parameters for nozzles

A PWR operates under the conditions given below. Problem Data. Core Thermal Output. Gap Conductance 1000 Btu/hr-ft 2 -F

Lecture 24: Flory-Huggins Theory

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

Physic 231 Lecture 12

Thermodynamics Partial Outline of Topics

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555.

Cosmology. Outline. Relativity and Astrophysics Lecture 17 Terry Herter. Redshift (again) The Expanding Universe Applying Hubble s Law

ENGI 4430 Parametric Vector Functions Page 2-01

Lecture 5: Equilibrium and Oscillations

MATHEMATICS FOR MANAGEMENT BBMP1103

Physics 321 Solutions for Final Exam

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances

Physics 43 HW #9 Chapter 40 Key

Another Explanation of the Cosmological Redshift. April 6, 2010.

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II

1/2 and e0 e s ' 1+ imm w 4 M s 3 πρ0 r 3 m. n 0 ktr. .Also,since n 0 ktr 1,wehave. 4 3 M sπρ 0 r 3. ktr. 3 M sπρ 0

WYSE Academic Challenge Sectional Physics 2007 Solution Set

AP Calculus BC AP Exam Problems Chapters 1 3

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand

MHT-CET 5 (PHYSICS) PHYSICS CENTERS : MUMBAI /DELHI /AKOLA /LUCKNOW / NASHIK /PUNE /NAGPUR / BOKARO / DUBAI # 1

y=h B 2h Z y=-h ISSN (Print) Dr. Anand Swrup Sharma

Surface and Contact Stress

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom

NAME TEMPERATURE AND HUMIDITY. I. Introduction

SAFE HANDS & IIT-ian's PACE EDT-04 (JEE) Solutions

Higher Mathematics Booklet CONTENTS

Sensors and Actuators Introduction to sensors

More Tutorial at

Computational modeling techniques

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data

Edexcel GCSE Physics

Chem 112, Fall 05 (Weis/Garman) Exam 4A, December 14, 2005 (Print Clearly) +2 points

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution

3-2-1 ANN Architecture

ECE 546 Lecture 02 Review of Electromagnetics

Lecture XXX. Approximation Solutions to Boltzmann Equation: Relaxation Time Approximation. Readings: Brennan Chapter 6.2 & Notes. Prepared By: Hua Fan

Acid Base Reactions. Acid Base Reactions. Acid Base Reactions. Chemical Reactions and Equations. Chemical Reactions and Equations

PHYS 314 HOMEWORK #3

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

DIFFERENTIABILITY OF REAL VALUED FUNCTIONS OF TWO VARIABLES AND EULER S THEOREM. ARUN LEKHA Associate Professor G.C.G., SECTOR-11, CHANDIGARH

Designing A Uniformly Loaded Arch Or Cable

PHYS ,Fall 05, Term Exam #1, Oct., 12, 2005

Q x = cos 1 30 = 53.1 South

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Reflector Antennas. Contents

ES201 - Examination 2 Winter Adams and Richards NAME BOX NUMBER

Exponential Functions

Hess Law - Enthalpy of Formation of Solid NH 4 Cl

ADSORPTION BASIC NOTION

SGP - TR - 30 PROCEEDINGS FOURTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING. Editors. December13-15, , 1978 SGP - TR - 30 CONF

EEO 401 Digital Signal Processing Prof. Mark Fowler

Minimum Spanning Trees

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322

Schematic of a mixed flow reactor (both advection and dispersion must be accounted for)

MUMBAI / AKOLA / DELHI / KOLKATA / LUCKNOW / NASHIK / GOA / BOKARO / PUNE / NAGPUR IIT JEE: 2020 OLYMPIAD TEST DATE: 17/08/18 PHYSICS SOLUTION ...

GUC (Dr. Hany Hammad) 4/20/2016

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are:

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels

ζ a = V ζ a s ζ a φ p = ω p V h T = p R θ c p Derivation of the Quasigeostrophic Height Tendency and Omega Equations

PHYSICS LAB Experiment 10 Fall 2004 ROTATIONAL DYNAMICS VARIABLE I, FIXED

PHYSICS 151 Notes for Online Lecture #23

Study Group Report: Plate-fin Heat Exchangers: AEA Technology

Fundamental Concepts in Structural Plasticity

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967

EE 119 Homework 6 Solution

... = ρi. Tmin. Tmax. 1. Time Lag 2. Decrement Factor 3. Relative humidity 4. Moisture content

Fill in your name and ID No. in the space above. There should be 11 pages (including this page and the last page which is a formula page).

PROJECTILES. Launched at an Angle

CHEM-443, Fall 2013, Section 010 Midterm 2 November 4, 2013

Math Final Exam Instructor: Ken Schultz April 28, 2006

7.0 Heat Transfer in an External Laminar Boundary Layer

Chapter 9 Compressible Flow 667

A Unified Theory of rf Plasma Heating. J.e. Sprott. July 1968

A Simple Set of Test Matrices for Eigenvalue Programs*

Transcription:

Opratin paramtrs r rprsntativ BWR an PWR sins ar ivn blw. Fr t PWR t cannl an t BWR avra cannl cmput an plt: 1) t vi an quality istributins ) Dtrmin t iniviual cmpnnts an t ttal prssur rp Cmpar t rsults btain usin bt quilibrium an nn quilibrium mls. Yu may assum t saturatin prprtis ar cnstant aln t lnt t cannl an may b valuat at t inlt prssur. Assum t Dix crrlatin r Cncntratin Paramtr an Drit Vlcity PRESSURIZED WATER REACTOR PARAMETERS Prssur 50 psia Clant Mass Flux.48 x 10 6 lbm/r-t Cr Inlt Tmpratur 55.5 F Maximum Cr Hat Flux 474,500 Btu/r-t R Pitc 0.496 incs R Diamtr 0.374 incs Ful Hit 144 incs Axial Pakin Factr 1.5 Fractin Enry Dpsit in Ful 0.974 Numbr Spacr ris 10 Spacr lss cicint 0.5 Cr Inlt Lss Cicint 1.5 Cr Exit Lss Cicint 1.5 T axial at lux may b takn t b ( z ) q() z = q 0 sin H BOILING WATER REACTOR PARAMETERS Cr Avra Hat Flux 144,03 Btu/r-t Prssur 1000 psia Clant Flw Rat 77 x 10 6 lbm/r Numbr Ful Assmblis 560 Can Dimnsins 5.78 x 5.78 incs R lcatins pr Assmbly 64 Cr Inlt Tmpratur 53 F R Pitc 0.640 incs R Diamtr 0.493 incs Ful Hit 146 incs Axial Pakin Factr 1.4 Fractin Enry Dpsit in Ful 0.97 Uppr an Lwr Ti Plat Lss Cicint 1.5 Numbr ris 8 Gri Lss Cicint 0.5 T axial at lux may b takn t b 1

( H - z ) ( H - z ) q() z = q0 sin H H Nt: q0 is nt t maximum at lux r tis istributin. Yu may assum t tw-pas rictin multiplir is ivn by t xprssin 0 1 1 (1 x) wr is t turbulnt Martinlli paramtr an ivn by 0. 1 x x 18. 1.75 an tat t Hmnus Multiplir riv in class is vali r t lcal lsss.

SOLUTION Hat Flux Prils PWR T at lux pril r t PWR cas is ivn as ( z ) q() z = q 0 sin wr r tis pril t maximum at lux ccurs at H / an is qual t q0. Fr t t cannl, tn 0 qmax 474,500 Btu/r - t q. T xtraplatin istanc assciat wit tis at lux pril is 0.301 t. BWR T at lux pril r t BWR cas is ivn as T avra cannl is in suc tat Fr t at lux pril ivn r q av H ( H - z ) ( H - z ) q() z = q0 sin H H q av H 1 q ( z H 0 q ( H ) H H ( H cs ( H )cs sin sin H H H H H 0 wic r q av 144, 03 may b slv irctly r q0 ivin ) q 0 1.108 10 Btu/r-t. T xtraplatin istanc assciat wit tis pril is 3.055 t. Entalpy Distributins T ntalpy istributin is ivn by t simpl nry balanc z 1 z ( ) (0) q( Dz m 0 5 wr t mass lw rat is ivn by trmin rm m GAx an A x S D / 4. Fr t BWR cas, t mass lux is 3

6 m m 7710 G 1.6610 A n S n D 60.83 cr asssmblis ( can rs /4) 6 lbm/r-t PWR z 1 ( H 0 m 0 H z ( ) (0) qsin Dz qdh 0 ( z ) z () (0) cs cs m H H Wr: BWR A x S D / 4 0.496 m GA x 0.374 / 4 0.136 in 6 4.48 10 9.46 10 344.9 lbm/r 9.46 10 4 t z 1 ( H ( H z ( ) (0) q 0 sin Dz m 0 H H qdh 0 ( H H ( H ( H ) H ) ( H ) z ( ) (0) cs sin cs sin m H H H H H H Wr: A x S D / 4 0.640 m GA x 0.493 / 4 0.187 in 6 4 1.66 10 15.19 10 19.8 lbm/r 15.19 10 4 t Bubbl Dpartur Pint T Bubbl Dpartur Pint can b btain rm t Saa-Zubr Crrlatin DC 0.00 q( z ) k q( z ) 154 G p P 70,000 P 70,000 wr GD C P k p R Pr is t Pclt Numbr an t ntalpy at t bubbl partur pint is ivn by z 1 in q ( Dz. m 0 Fr t quilibrium ml, t bubbl partur pint is takn t b t nnbilin it in by In itr cas, slutin is itrativ. ( H ) 4

PWR Takin t trmynamic prprtis at t mipint btwn t inlt tmpratur an t saturatin tmpratur ivs C p 1.4336 Btu/lbm-F k 0.3051 Btu/r-t-F T quivalnt iamtr is ivin r t Pclt numbr D 4Ax D 4 0.136 0.4637 incs 0.0386 t 0.374 6 GDC p.4810 0.03861.4336 P 4.501 10 k 0.3051 5 T bubbl partur pint is tn t slutin t transcnntal quatin q( z ) 154 G wr an t nn bilin it is t slutin qdh 0 ( z ) (0) cs cs m H H qdh 0 ( H ) (0) cs cs m H H Fr t PWR t cannl, z 8.319 t an H 10.07 t. BWR T subclin is suicintly small, tat t trmynamic prprtis can b apprximat as ts at t saturatin pint r valuatin t Pclt numbr. At 1000 psia, t saturatin tmpratur is T 544.58 F. C p 1.85 Btu/lbm - F k 0.3314 Btu/r - t - F T quivalnt iamtr is sat D 4Ax D 4 0.187 0.5648 incs 0.0471t 0.493 ivin r t Pclt numbr 5

6 GDC p 1.6610 0.04711.85 P.311 10 k 0.3314 5 T bubbl partur pint is tn t slutin t transcnntal quatin q( z ) 154 G wr qdh 0 ( Hz ) H ( H ( H ) H ) ( H ) (0) cs sin cs sin m H H H H H H an t nn bilin it is t slutin qdh 0 ( HH) HH) ( HH) ( H ) H ) ( H ) (0) cs sin cs sin m H H H H H H Fr t BWR avra cannl, z 0.118 t z 0 an H 1.399 t. Quality Distributins T lw quality as a unctin psitin is ivn by t Lvy pril it ml x x ( x) 0 x xp ( x ) 1 z z z z wr x is t lcal quilibrium quality an ( x ) is t quilibrium quality at t bubbl partur pint, i.. ( x ) Fr t quilibrium ml, t lw quality is ivn by 0 x x z H z H wr t lcal quilibrium quality is ivn by ( x ( PWR 6

T quality istributins assumin quilibrium an nn quilibrium lws ar illustrat blw. T cannl xit quality assumin quilibrium lws is x ( H) 0.09, an assumin nn quilibrium lw is xh ( ) 0.043. PWR Quality Distributins 0.05 0.04 Equilibrium Ml Nn Equilibrium Ml Quality 0.03 0.0 0.01 0.00 0 4 6 8 10 1 Axial Psitin (t) BWR T quality istributins assumin quilibrium an nn quilibrium lws ar illustrat blw. T cannl xit quality assumin quilibrium an nn quilibrium lws ar t sam an qual t xh ( ) 0.16. 7

BWR Quality Distributins 0.16 0.14 Equilibrium ml Nn quilibrium ml 0.1 Quality 0.10 0.08 0.06 0.04 0.0 0.00 0 4 6 8 10 1 Axial Psitin (t) Vi Distributin T Zubr-Finlay Crrlatin r vi ractin is 1 1 x V C 1 x Gx j wic r a iv cannl mass lux an prssur is nly a unctin t quality an t liqui pas nsity. T liqui pas nsity can b it t a lw rr plynmial as a unctin t liqui pas ntalpy. Assumin an quilibrium lw ml, t liqui pas nsity is ivn by ( ) z H z H Fr t nn quilibrium ml, t quality is btain rm t pril it ml an t liqui pas nsity is ivn by ( ) wr t liqui pas ntalpy is ivn by 8

( x( ( 1 x( PWR T Vi istributins assumin quilibrium an nn quilibrium lws ar illustrat blw. T cannl xit vi assumin quilibrium lws is ( H ) 0.179, an assumin nn quilibrium lw is ( H ) 0.35. q PWR Vi Distributins 0.5 0.0 Equilibrium Ml Nn Equilibrium Ml Vi Fractin 0.15 0.10 0.05 0.00 0 4 6 8 10 1 Axial Psitin (t) BWR T vi istributins assumin quilibrium an nn quilibrium lws ar illustrat blw. T cannl xit vi ractin assumin quilibrium an nn quilibrium lws ar t sam an qual t ( H ) 0.711. 9

BWR Vi Distributins 0.7 0.6 Equilibrium ml Nn quilibrium ml Vi Fractin 0.5 0.4 0.3 0. 0.1 0.0 0 4 6 8 10 1 Axial Psitin (t) Prssur Drp T prssur rp in t cannl is t sum t acclratin, rictin, lcal an lvatin lsss. Acclratin Lsss T acclratin lss in t cannl is P acc G ( c 1 x( H ) ( H ) x( H ) ( H ) 1 (0) Frictin Prssur Drp T rictinal lss is z z G G P rictin( ( z D D c c H wr aain r t quilibrium cas, t bubbl partur pint is takn as t nn bilin it Fr smt tubin, t rictin actr can b takn t b H. 0.184 R 0. Lcal Lsss 10

W can writ t lcal lsss witin t cannl as P lcal G j j c z j [0, z] K ( z ) j wr in t tw pas multiplir is takn t b n in t sinl pas rin. Fr t PWR cas, t ri lcatins (in incs) ar z j [0,16, 3, 48, 64, 80, 96, 11,18, 144] In t BWR cas, t ris ar plac unirmly aln t lnt t bunl, but nt at t bunl inlt an xit suc tat t ri lcatins (in incs) ar z j [16., 3.44, 48.66, 64.88, 81.11, 97.33,113.56,19.78] Elvatin Lsss T lvatin lsss ar btain by intratin t nsity istributin vr t cannl lnt, i.. P lv 0 H ( c z wr t nsity is ivn by ( ( ( ( ( z z z z Prir t racin quilibrium, t liqui nsity is a unctin ntalpy an can b btain by a simpl parablic it nsity t ntalpy rm t stam tabls. T ttal prssur rp is t sum t iniviual rps P P acc P rictin P lcal P lv T intrals in t prssur rp quatins ar valuat numrically. T iniviual prssur rps ar PWR Equilibrium 1.0 psi P acc 6.06 psi P rictin 10.4 psi P lcal 3.4 psi P lv 0.87 P ttal 11

Nn Equilibrium 1.17 psi P acc 7.37 psi P rictin 10.63 psi P lcal 3.35 psi P lv P ttal.5 BWR Equilibrium 1.76 psi P acc 9.73 psi P rictin 5.38 psi P lcal.035 psi P lv 18.4 P ttal Nn Equilibrium 1.76 psi P acc 9.876 psi P rictin 5.4 psi P lcal 1.97 psi P lv 18.54 P ttal 1