Introduction to Physiology IV - Calcium Dynamics

Similar documents
Dynamical Systems for Biology - Excitability

Calcium dynamics, 7. Calcium pumps. Well mixed concentrations

4.3 Intracellular calcium dynamics

Mathematical Analysis of Bursting Electrical Activity in Nerve and Endocrine Cells

Quantitative Electrophysiology

A Mathematical Study of Electrical Bursting in Pituitary Cells

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016

Quantitative Electrophysiology

Electrophysiology of the neuron

Modeling. EC-Coupling and Contraction

Introduction to Physiology II: Control of Cell Volume and Membrane Potential

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1

Biomedical Instrumentation

Chapter 8 Calcium-Induced Calcium Release

لجنة الطب البشري رؤية تنير دروب تميزكم

Lecture Notes 8C120 Inleiding Meten en Modelleren. Cellular electrophysiology: modeling and simulation. Nico Kuijpers

Computer Science Department Technical Report. University of California. Los Angeles, CA

An Application of Reverse Quasi Steady State Approximation

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

Lecture 13, 05 October 2004 Chapter 10, Muscle. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Modeling 3-D Calcium Waves from Stochastic Calcium sparks in a Sarcomere Using COMSOL

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Nervous Lecture Test Questions Set 2

Nervous System Organization

Cellular Electrophysiology and Biophysics

Space State Approach to Study the Effect of. Sodium over Cytosolic Calcium Profile

Single-Compartment Neural Models

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Our patient for the day...

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

UNIT 6 THE MUSCULAR SYSTEM

Voltage-clamp and Hodgkin-Huxley models

Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued

dynamic processes in cells (a systems approach to biology)

According to the diagram, which of the following is NOT true?

Ch 8: Neurons: Cellular and Network Properties, Part 1

2.6 The Membrane Potential

Stabilizing Role of Calcium Store-Dependent Plasma Membrane Calcium Channels in Action-Potential Firing and Intracellular Calcium Oscillations

Biology September 2015 Exam One FORM G KEY

Biology September 2015 Exam One FORM W KEY

Voltage-clamp and Hodgkin-Huxley models

Finite Volume Model to Study Calcium Diffusion in Neuron Involving J RYR, J SERCA and J LEAK

Dynamics from Seconds to Hours in Hodgkin Huxley Model

Neurons and Nervous Systems

9 Generation of Action Potential Hodgkin-Huxley Model

Computational Cell Biology

Frontiers in CardioVascular Biology

Neurophysiology. Danil Hammoudi.MD

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 12, PAGE 1 of 7

Membrane Protein Pumps

LESSON 2.2 WORKBOOK How do our axons transmit electrical signals?

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Neurons, Synapses, and Signaling

Dynamical Systems in Neuroscience: Elementary Bifurcations

c 2006 Society for Industrial and Applied Mathematics

Role of the Na -Ca 2 Exchanger as an Alternative Trigger of CICR in Mammalian Cardiac Myocytes

Unifying principles of calcium wave propagation insights from a three-dimensional model for atrial myocytes

Basic mechanisms of arrhythmogenesis and antiarrhythmia

Slide 1. Slide 2. Slide 3. Muscles general information. Muscles - introduction. Microtubule Function

Finite Difference Model to Study the Effects of Na + Influx on Cytosolic Ca 2+ Diffusion

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations

Multimodal Information Encoding in Astrocytes

Chapter 9. Nerve Signals and Homeostasis

Particles with opposite charges (positives and negatives) attract each other, while particles with the same charge repel each other.

Nerves and their impulses. Biology 12 C-11

Introduction to electrophysiology. Dr. Tóth András

Nervous Tissue. Neurons Neural communication Nervous Systems

Fundamentals of Neurosciences. Smooth Muscle. Dr. Kumar Sambamurti 613-SEI; ;

Questions: Properties of excitable tissues Transport across cell membrane Resting potential Action potential Excitability change at excitation

Modelling the transition from simple to complex Ca 2+ oscillations in pancreatic acinar cells

Chapter 48 Neurons, Synapses, and Signaling

CIE Biology A-level Topic 15: Control and coordination

Invariant Manifold Reductions for Markovian Ion Channel Dynamics

Introduction to Physiology V - Coupling and Propagation

the axons of the nerve meet with the muscle cell.

Neurons. The Molecular Basis of their Electrical Excitability

Membrane Potential. 1. Resting membrane potential (RMP): 2. Action Potential (AP):

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/

Ion Channel Structure and Function (part 1)

A minimalist model of calcium-voltage coupling in GnRH cells

Deconstructing Actual Neurons

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC)

Chapter 2 Basic Cardiac Electrophysiology: Excitable Membranes

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Chem Lecture 9 Pumps and Channels Part 1

Membrane Potentials, Action Potentials, and Synaptic Transmission. Membrane Potential

dynamic processes in cells (a systems approach to biology)

From neuronal oscillations to complexity

Sophisticated Synapses: Modeling Synaptic Modulation by Astrocytes Suhita Nadkarni

A spatial Monte Carlo model of IP 3 -dependent calcium. oscillations. Evan Molinelli. Advisor: Gregry D. Smith. Department of Applied Science

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon

A Model Based Analysis of Steady-State versus Dynamic Elements in the Relationship between Calcium and Force

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

BME 5742 Biosystems Modeling and Control

9.01 Introduction to Neuroscience Fall 2007

5/31/2013. Mechanical-Energetic Coupling in Airway Smooth Muscle. Evolution of Academic Medical Centers

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

The Development of a Comprehensive Mechanism for Intracellular Calcium Oscillations: A Theoretical Approach and an Experimental Validation

Transcription:

Introduction to Physiology IV - Calcium Dynamics J. P. Keener Mathematics Department Introduction to Physiology IV - Calcium Dynamics p.1/26

Introduction Previous lectures emphasized the role of sodium and potassium in control of membrane size and potential; Calcium is equally important in almost every cell type; Calcium controls secretion, cell movement, muscular, contraction, cell differentiation, ciliary beating, etc. Calcium is important in both excitable and inexcitable cells. Calcium Dynamics p.2/26

Muscle Calcium Dynamics p.3/26

Muscle Calcium Dynamics p.4/26

Phototransduction Calcium Dynamics p.5/26

Phototransduction Calcium Dynamics p.6/26

Taste Calcium Dynamics p.7/26

Synaptic Transmission Calcium Dynamics p.8/26

Synaptic Transmission Calcium Dynamics p.9/26

Calcium Oscillations A 0.4 nm 0.6nM 0.9nM VP CCh 10mM B A) Hepatocytes B) Rat parotid gland C GnRH 1nM 10s D 20s C) Gonadotropes D) Hamster eggs 20s 30s 1min E, F) Insulinoma Cells E 25mM F 200mM CCh 50s 50s Calcium Dynamics p.10/26

Calcium Handling Calcium Dynamics p.11/26

IPR Calcium Handling J L JSL Extracellular Space v dc dt = J IP R J SERCA + J L J SL (Intracellular Space) Cytosol J IPR JSERCA Sarcoplasmic Reticulum (Calcium stores) Calcium Dynamics p.12/26

IPR Calcium Handling J L JSL Extracellular Space v dc dt = J IP R J SERCA + J L J SL (Intracellular Space) Cytosol Sarcoplasmic Reticulum J IPR JSERCA (Calcium stores) with J IP R IP 3 Receptor - calcium regulated calcium channel, Calcium Dynamics p.12/26

IPR Calcium Handling J L JSL Extracellular Space v dc dt = J IP R J SERCA + J L J SL (Intracellular Space) Cytosol Sarcoplasmic Reticulum J IPR JSERCA (Calcium stores) with J IP R IP 3 Receptor - calcium regulated calcium channel, J SERCA Sarco- and Endoplasmic Reticulum Calcium ATPase, Calcium Dynamics p.12/26

IPR Calcium Handling J L JSL Extracellular Space v dc dt = J IP R J SERCA + J L J SL (Intracellular Space) Cytosol Sarcoplasmic Reticulum J IPR JSERCA (Calcium stores) with J IP R IP 3 Receptor - calcium regulated calcium channel, J SERCA Sarco- and Endoplasmic Reticulum Calcium ATPase, J L L-calcium leak, Calcium Dynamics p.12/26

IPR Calcium Handling J L JSL Extracellular Space v dc dt = J IP R J SERCA + J L J SL (Intracellular Space) Cytosol Sarcoplasmic Reticulum J IPR JSERCA (Calcium stores) with J IP R IP 3 Receptor - calcium regulated calcium channel, J SERCA Sarco- and Endoplasmic Reticulum Calcium ATPase, J L L-calcium leak, J SL SarcoLemnal pump (ATPase). Calcium Dynamics p.12/26

IPR Calcium Handling J L JSL Extracellular Space v dc dt = J IP R J SERCA + J L J SL (Intracellular Space) Cytosol Sarcoplasmic Reticulum J IPR JSERCA (Calcium stores) with J IP R IP 3 Receptor - calcium regulated calcium channel, J SERCA Sarco- and Endoplasmic Reticulum Calcium ATPase, J L L-calcium leak, J SL SarcoLemnal pump (ATPase). Challenge: Determine the flux terms. Calcium Dynamics p.12/26

Calcium Handling group I k 1 p S 000 S 100 k -1 k -5 k -1 S 110 S 010 k 5 c k 1 p k 5 c k -5 S 110 k -2 k 2 c k -4 k 4 c k -4 k 4 c k -2 k 2 c k -2 k 2 c k 3 p k 5 c k 3 p k 5 c S 111 k -3 S 011 S 001 k -5 group II k -3 S 101 S 111 k -5 Calcium Dynamics p.13/26

the Imagine IP3 Receptors 10 ++ Ca ++ ++ Ca ++ Ca Ca S S 11 01 00 S S Calcium Dynamics p.14/26

IP 3 Receptors Flux through IP 3 receptor is diffusive, J IP R = g max P o (c c sr ) where P o = S10 3 = m3 h 3 is the open probability, and dm dh dt = φ m (c)(1 m) ψ m (c)m, dt = φ h(c)(1 h) ψ(c)h. Furthermore, m is a fast variable, so is in qss, m = m (c). Ca ++ S 10 00 "fast" S ++ Ca "slow" "slow" Ca ++ S 01 Ca ++ "fast" S 11 Consequently, (h is reminiscent of HH h)... Calcium Dynamics p.15/26

Calcium Dynamics dc dt = (g maxp o + J er )(c e c) J SERCA, dh dt = φ h(c)(1 h) ψ h (c)h, 1 0.8 0.6 where J SERCA = V max c 2 K 2 s +c 2, P o = h 3 f(c) h 0.4 0.2 0 0 5 10 15 20 25 30 35 40 45 50 1 0.8 0.6 0.4 time (s) 0.2 0 10 2 10 1 10 0 c (µ M) Calcium Dynamics p.16/26

Bifurcation Diagram A 0.8 Stable oscillation c (µm) 0.6 0.4 c max unstable oscillation 0.2 HB unstable steady state HB stable 0 5 p 10 15 c (µm) B 0.5 0.4 0.3 0.2 0.1 0.0 p=10 c (µm) C 0.6 0.4 0.2 0.0 p=1 65 70 75 80 85 time (s) 90 95 50 100 time (s) 150 Calcium Dynamics p.17/26

RYR Calcium Handling Calcium Dynamics p.18/26

Excitation-Contraction Coupling Cardiac cells are interesting because they contain TWO excitable systems that are interconnected The sodium-potassium electrical action potential, that stimulates an inward calcium flux diadic cleft which excites CICR which causes muscles to contract. Calcium Dynamics p.19/26

EC Calcium Handling J L JNCX Extracellular Space v dc dt = J RY R J SERCA + J L J NCX Cytosol (Intracellular Space) J RYR JSERCA Sarcoplasmic Reticulum (Calcium stores) Calcium Dynamics p.20/26

EC Calcium Handling J L JNCX Extracellular Space v dc dt = J RY R J SERCA + J L J NCX Cytosol (Intracellular Space) Sarcoplasmic Reticulum J RYR JSERCA (Calcium stores) with J RY R Ryanodine Receptor - calcium regulated calcium channel, Calcium Dynamics p.20/26

EC Calcium Handling J L JNCX Extracellular Space v dc dt = J RY R J SERCA + J L J NCX Cytosol (Intracellular Space) Sarcoplasmic Reticulum J RYR JSERCA (Calcium stores) with J RY R Ryanodine Receptor - calcium regulated calcium channel, J SERCA Sarco- and Endoplasmic Reticulum Calcium ATPase, Calcium Dynamics p.20/26

EC Calcium Handling J L JNCX Extracellular Space v dc dt = J RY R J SERCA + J L J NCX Cytosol (Intracellular Space) Sarcoplasmic Reticulum J RYR JSERCA (Calcium stores) with J RY R Ryanodine Receptor - calcium regulated calcium channel, J SERCA Sarco- and Endoplasmic Reticulum Calcium ATPase, J L L-type voltage regulated calcium channel, Calcium Dynamics p.20/26

EC Calcium Handling J L JNCX Extracellular Space v dc dt = J RY R J SERCA + J L J NCX Cytosol (Intracellular Space) Sarcoplasmic Reticulum J RYR JSERCA (Calcium stores) with J RY R Ryanodine Receptor - calcium regulated calcium channel, J SERCA Sarco- and Endoplasmic Reticulum Calcium ATPase, J L L-type voltage regulated calcium channel, J NCX sodium(na ++ )- Calcium exchanger. Calcium Dynamics p.20/26

EC Calcium Handling J L JNCX Extracellular Space v dc dt = J RY R J SERCA + J L J NCX Cytosol (Intracellular Space) Sarcoplasmic Reticulum J RYR JSERCA (Calcium stores) with J RY R Ryanodine Receptor - calcium regulated calcium channel, J SERCA Sarco- and Endoplasmic Reticulum Calcium ATPase, J L L-type voltage regulated calcium channel, J NCX sodium(na ++ )- Calcium exchanger. Challenge: Determine the flux terms. Calcium Dynamics p.20/26

Serious Problems There are (at least) three problems with this (and all similar) models: A J ICa J RyR B Graded response membrane potential (mv) Calcium is not spatially homogenious; channels are controlled by local calcium concentration. Thus, whole cell models are inappropriate - geometry mattters. Channel openings are not deterministic and numbers are not large. Stochastic modeling is needed. Calcium Dynamics p.21/26

Bursting A) Pancreatic β-cell B) Rat midbrain C) Cat Thalamocortical relay neuron D) Guinea pig olivary neuron E Aplysia R15 neuroon F) Cat thalamic reticular neuron G) Sepia giant axon H) Rat thalamic reticular neuron I) Mouse neocortical pyramidal neuron J) Pituitary gonadotropin relasing cell Calcium Dynamics p.22/26

Pancreatic β cells C m dv dt τ n (V ) dn dt dc dt = I Ca (V ) = n (V ) n, = f( k 1 I Ca (V ) k c c), ( ḡ K n 4 + ḡk,cac ) (V V K ) ḡ L (V V L ), K d + c where I Ca = ḡ Ca m 3 (V )h (V )(V V Ca ). Calcium Dynamics p.23/26

Fast Phase Plane n A B n V Low Ca ++ High Ca ++ V Calcium Dynamics p.24/26

Bifurcation Diagram A V HB max V osc HC dc/dt=0 min V osc SN V ss c hb c hc c B V dc/dt=0 V ss c Calcium Dynamics p.25/26

Bursting Oscillations -20 V (mv) -30-40 -50 0.8 0.7 c (µm) 0.6 0.5 0.4 0 5 10 Time (s) 15 20 Calcium Dynamics p.26/26