Search for Majorana neutrinos and double beta decay experiments

Similar documents
Double Beta Present Activities in Europe

-> to worldwide experiments searching for neutrinoless double beta decay

a step forward exploring the inverted hierarchy region of the neutrino mass

Neutrinoless Double Beta Decay for Particle Physicists

Two Neutrino Double Beta (2νββ) Decays into Excited States

LUCIFER. Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 2012

CUPID Advanced bolometric technologies for double beta decay search in France

To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

Neutrinoless Double-Beta Decay

arxiv: v1 [physics.ins-det] 23 Oct 2007

Search for Neutrinoless Double- Beta Decay with CUORE

The CUORE Detector: New Strategies

NEMO-3 latest results

Kinematic searches. Relativity. Uncertainty. Best candidate: Using molecular tritium, daughter will be Kai Zuber 25

Neutrinoless Double Beta Decay. Phys 135c Spring 2007 Michael Mendenhall

How can we search for double beta decay? Carter Hall University of Maryland

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Topological detection of ββ-decay with NEMO-3 and SuperNEMO

Excited State Transitions in Double Beta Decay: A brief Review

Status of the CUORE experiment at Gran Sasso

Considerations for future neutrinoless double beta decay experiments

The GERmanium Detector Array

Sei Yoshida Physics Department, Osaka University on behalf of KamLAND-Zen

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

Scintillating bolometers for the LUCIFER project. Luca Pattavina INFN-Laboratori Nazionali del Gran Sasso

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

Results from EXO 200. Journal of Physics: Conference Series. Related content PAPER OPEN ACCESS

First results on neutrinoless double beta decay of 82 Se with CUPID-0

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

SuperNEMO Double Beta Decay Experiment. A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration)

Status and Perspectives of the COBRA-Experiment

The NEMO experiment. Present and Future. Ruben Saakyan UCL 28 January 2004 IOP meeting on double beta decay Sussex

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of Cuore experiment and last results from Cuoricino

Double Beta Decay Committee to Assess the Science Proposed for a Deep Underground Science and Engineering Laboratory (DUSEL) December 14-15, 2010

arxiv: v1 [nucl-ex] 14 May 2013

Background Free Search for 0 Decay of 76Ge with GERDA

The GERDA Experiment:

Sensitivity and Discovery Prospects for 0νββ-decay

K. Zuber, Techn. Univ. Dresden Cocoyoc, Status of double beta decay searches

Prospects for kev-dm searches with the GERDA experiment

Pauli. Davis Fermi. Majorana. Dirac. Koshiba. Reines. Pontecorvo. Goeppert-Mayer. Steve Elliott

Neutrinoless double beta decay with 76Ge. Bernhard Schwingenheuer Max-Planck-Institut für Kernphysik, Heidelberg

LUCIFER: Neutrinoless Double Beta decay search with scintillating bolometers

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo

Neutrino Masses and Mixing

cryogenic calorimeter with particle identification for double beta decay search

Stefano Pirro. JRA2 Highlights Scintillating Bolometers. -Milano

Luminescent bolometers for the study of double beta decay. Claudia Nones CEA- IRFU

Double Beta Decay Experiments Present and Future First results of NEMO3

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

K. Zuber, Techn. Univ. Dresden Dresden, 17. Feb Double beta decay searches

The Quest for Neutrino-less Double Beta Decay

LUCIFER: Neutrinoless Double Beta Decay search with scintillating bolometers

AMoRE 0 experiment using low temperature 40 Ca 100 MoO 4 calorimeters

Searching for neutrino- less double beta decay with EXO- 200 and nexo

New results of CUORICINO on the way to CUORE

FIRST RESULT FROM KamLAND-Zen Double Beta Decay with 136 Xe

Welcome to neutrino nuclear physics

K. Zuber, TU Dresden INT, Double beta decay experiments

Neutrinoless double beta decay with CUPID-Mo

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Cosmogenic background for the GERDA experiment. Luciano Pandola INFN, Laboratori del Gran Sasso, Italy

The energy calibration system of the CUORE double beta decay bolometric experiment

Particle Physics: Neutrinos part II

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon

Henry Primakoff Lecture: Neutrinoless Double-Beta Decay

Direct Dark Matter and Axion Detection with CUORE

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

L esperimento GERDA. GERDA - gruppo INFN. L Aquila, Congresso SIF, 30/09/2011. OUTLINE: GERDA Motivations GERDA Status GERDA Future plans

Neutrino mass and neutrinoless double beta decay (0νββ)

next The NEXT double beta decay experiment Andrew Laing, IFIC (CSIC & UVEG) on behalf of the NEXT collaboration. TAUP2015, Torino, 8/09/2015

LUCIFER: AN EXPERIMENTAL BREAKTHROUGH IN THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

the first prototype for a scintillating bolometer double beta decay experiment.

Effect Cherenkov dans le TeO2. Marco Vignati INFN Roma GDR neutrino, APC Paris, 21 June 2012

Status of the GERDA experiment

Search for Neutrinoless Double Beta Decay in the GERDA Experiment

arxiv: v1 [physics.ins-det] 1 Feb 2016

June, 2011 For the CNS2, P. Belli, C. Brofferio, M. G. Giammarchi, A. Ianni, M. Pallavicini

Yoann KERMAÏDIC PSeGe workshop

Mo-enriched Li 2 MoO 4 scintillating bolometers for 0ν2β decay search: from LUMINEU to CUPID-0/Mo projects

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

XMASS: a large single-phase liquid-xenon detector

Search for neutrinoless double beta decay: status of SuperNEMO project Yu. Shitov, Imperial

The Gerda Experiment for the Search of Neutrinoless Double Beta Decay

Hugon Christophe Université Aix-Marseille, CPPM, IN2P3/CNRS on behalf of the SuperNEMO collaboration. C. Hugon, rencontre du Vietnam 2017

K. Zuber, TU Dresden DESY, 9/10 September In search of neutrinoless double beta decay

Current status and future of double β decay experiments. Fedor Danevich Institute for Nuclear Research, Kyiv, Ukraine

Status of the CUORE and CUORE-0 Experiments at Gran Sasso

KamLAND-Zen Experiment for Zero Neutrino Double Beta Decay Search

GERDA & the future of 76 Ge-based experiments

Wavelength Shifting Reflector Foils for Liquid Ar Scintillation Light

EXO experiment. Jesse Wodin EXO group Sept 13, DOE Site Visit: Sept 13-14,

Institute for Nuclear Research, MSP Kyiv, Ukraine. Dipartimento di Fisica, Università di Roma Tor Vergata, I Rome, Italy

Present and future strategies for neutrinoless double beta decay searches

The GERDA Neutrinoless double beta decay experiment

Search for 0νββ-decay with GERDA Phase II

Transcription:

Search for Majorana neutrinos and double beta decay experiments Xavier Sarazin Laboratoire de l Accélérateur Linéaire (CNRS-IN2P3, Univ. Paris-Sud 11)

Majorana Neutrino Neutrino is the only fermion with Q = 0 Neutrino might be a Majorana particle n = n? Only two n states: CPT n L, h= -1/2 > n R, h= +1/2 > Massive Majorana n Violation of the Leptonic Number Leptogenesis in the Early Universe through the Majorana neutrino See-saw mechanism to explain the small mass of the neutrino Observation of bb0n decay is the most sensitive way to probe Majorana

bb2n and bb0n decay For few isotopes, b-decay is forbiden bb2n process (second order b-decay) Q bb Energy Sum of the two electrons

bb2n and bb0n decay If neutrino is a Majorana particle bb0n Process For few isotopes, b-decay is forbiden bb2n process (second order b-decay) V+A m n bb0n Energy Sum of the two electrons Q bb Process L = 2 Majorana neutrino exchange Right Handed weak current Majoron production Exchange of SUSY particles Energy and angular distributions will be different!

Theoretical predictions In the case of an standard exchange of a Majorana neutrino 0n - 1 2 2 = T M m 1/ 2 0n 0n ee Phase space factor Nuclear Matrix Element Theoretical uncertainty Effective mass m ee = Constraint by n oscillations i U 2 ei m n i

Constraints from neutrino oscillations In the case of an standard exchange of a Majorana neutrino m m Degenerate masses 2 m3 mn > matm m ν > 50meV 1 2 50meV Merle & Rodejohann PRD 73, 073012 (2006) Inverted hierarchy 10 mν 50meV Normal hierarchy m ν?

Nuclear Matrix Elements Calculated T 1/2 (bb0n) to start exploring the Inverted Hierarchy in the case of exchange of Majorana neutrino m n 50 mev ~ 3 10 27 QRPA Tüe. Simkovic, Phys. Rev. C 79 (2009); Fang, Phys. Rev. C 82 (2010) QRPA Jy. Kortelainen, Phys. Rev. C 75 and C 76 (2007) NSM Shell Model Menendez, Nucl. Phys. A818 (2009); Phys. Rev. C 80 (2009) IBM Interacting Boson Model Barea, Phys. Rev. C79 (2009) GCM Generating Coordinate Method Rodriguez, Phys. Rev. Lett. 105 (2010) PHFB Projected Hartree-Fock- Bogoliubov Rath, Phys. Rev. C 82 (2010) ~ 3 10 25 N nuclei ( 76 Ge) 10 N nuclei ( 100 Mo, 150 Nd) from Duek et al., Phys. Rev. D 83 (2011)

Sensitivity T 1/ 2 bb 0n > ln2 N avog A N M T excl obs bkg M Large Mass of enriched bb isotopes High efficiency N excl Low background High energy resolution

Origin of background Cosmic rays and induced g s underground lab High energy g s up to ~ 10 MeV produced by neutron captures Natural radioactivity ( 238 U and 232 Th chain): 208 Tl, 214 Bi, Radon ( 222 Rn) and Thoron ( 220 Rn), a-decay (in case of no e - /a discrimination) 208 Tl: Q b = 2.4 MeV + g 2.6 MeV 214 Bi: Q b = 3.2 MeV Ultra low radioactive detectors: Detector materials: A( 208 Tl) < 1 mbq/kg Source A( 208 Tl) < 1-10 mbq/kg For comparison, a standard Al foil: A( 208 Tl) ~ 100 mbq/kg

Current best limits obtained in bb0n search Limits at 90% C.L. T 1/2 (0n) limit (10 24 yrs) 10 24 yrs m n limit (ev) 1 ev GERDA NEMO-3 Inverted hierarchy Cuoricino Kamland-Zen EXO-200

Calorimeters Electron Tracking Ge diodes Ionisation Gerda ( 76 Ge) Majorana ( 76 Ge) Tracko-Calo SuperNEMO ( 76 Se, 150 Nd, 48 Ca) Cuore ( 130 Te) Bolometers Phonon + Scint. Lumineu ( 100 Mo) Lucifer ( 82 Se) Gas Xe TPC Ionisation NEXT ( 136 Xe) Amore ( 100 Mo) Scintillators Scintillations Kamland-Zen ( 136 Xe) SNO+ ( 130 Te) Candles-3 ( 48 Ca) Pixel. CdZnTe Ionisation Cobra ( 116 Cd) Liq. Xe TPC Ionisation+scint. EXO ( 136 Xe)

Ge diodes

76 Ge GERDA (LNGS) (Q bb = 2040 kev) Bare Ge crystals in Liquid Argon - Liq. Argon = cryostat + shield - Ext. Water tank for shield + m-veto - Detector arrays gradual deployment

GERDA (LNGS) 76 Ge (Q bb = 2040 kev) Bare Ge crystals in Liquid Argon - Liq. Argon = cryostat + shield - Ext. Water tank for shield + m-veto - Detector arrays gradual deployment Without PSA With PSA Phase 1 (2011-2013) ~ 18 kg 76 Ge 8 old 76 Ge detectors (HdM, IGEX) 5 new BEGe detectors FWHM ~ 3 kev @ 2.6 MeV for BEGe Energy peaks stable within 1 kev 21.6 kg.yr 76 Ge exposure Bkg ~ 10-2 cts/kev/kg/yr This is 10 times lower than previous Ge experiments! T 1/2 (bb0n) > 2.1 10 25 yr (90% C.L.) Mod. Phys. Lett. A 29, 1430001 (2014)

GERDA (LNGS) 76 Ge (Q bb = 2040 kev) Bare Ge crystals in Liquid Argon - Liq. Argon = cryostat + shield - Ext. Water tank for shield + m-veto - Detector arrays gradual deployment Phase 2 (2014) ~ 50 kg 76 Ge 30 new Broad Energy (BEGe) detectors High pulse shape discrimination performances Single Site (bb0n) / Multi Sites (g bkg) discrimination Detection of Ar scintillation light Liquid Argon as active shield with the scintillation veto Target : Bkg ~ 10-3 cts/kev/kg/yr T 1/2 (bb0n) > 2 10 26 yr in 5 yrs of data

76 Ge MAJORANA (Q bb = 2040 kev) Under construction in Sanford Underground Laboratory (USA) Up to 40 kg of HBGe crystals Standard shield with electroformed Copper and lead Start data with first cryostat end 2014 LOI between GERDA & MAJORANA Collaborations Intention to merge for O(1 ton) exp. selecting the best technologies

Bolometers

nat Te0 2 crystal CUORICINO (LNGS, Italy) CUORICINO (2003 2008) 40 kg nat Te0 2 ~ 10 kg 130 Te ~50 crystals nat TeO 2 60 Co FWHM ~ 6 kev @ Q bb T 1/2 (bb0n) > 2.8 10 24 y (90%C.L.) Astropart. Phys. 34, 822 (2011) BKG = 0.17 cts/(kev.kg.yr) ~ 70% a s from crystals and Cu surfaces ~ 30% external 2.6 MeV g-ray ( 208 Tl) from cryostat Q bb ( 130 Te) ~ 2530 kev

nat Te0 2 crystal CUORE (LNGS, Italy) CUORE (start 2015) 19 Cuoricino-like towers in a new cryostat 740 kg nat Te0 2 200 kg 130 Te Target: Bkg = 0.01 cts/(kev.kg.yr) (17 times lower than Cuoricino) Sensitivity expected in 5 years T 1/2 (bb0n) > 10 26 y CUORE-0 = 1st CUORE tower running in the cuoricino cryostat Preliminary result of the background measurement a bkg reduced by a factor 6 g bkg still dominated by cuoricino cryostat: we must wait for the new cuore cryostat

Scintillating bolometers Expected CUORE bkg = 0.01 cts/(kev.kg.yr) ~ 35 cts/year in the bb0n energy window (fwhm) This is still a high level of bkg! CUORE bkg must be reduced by an extra factor 10 at least! The way to reach a «zero bkg» with bolometers: Rejection 2.6 MeV g-ray bkg use crystal with Q bb > 2.6 MeV ZnMoO4, CaMoO 4 ( 100 Mo, Q bb = 3 MeV) ZnSe ( 82 Se, Q bb = 3 MeV) CdWO4 ( 116 Cd, Q bb = 2.8 MeV) Rejection a bkg Scintillating bolometers for a / (e -,g) discrimination S. Pirro et al. Physics of Atomic Nuclei, 69 (2006)

Scintillating bolometers Ge plate Scintillation signal a/(e -,g) discrimination Lumineu R&D ZnMoO 4 (313g) 141 h @ LSM Heat signal Energy measurement 3 experiments are starting: LUMINEU: Zn 100 MoO 4 crystal (France) LUCIFER: Zn 82 Se crystal (Italy) AMORE: 40 Ca 100 MoO 4 crystal (Korea) Expected bkg using CUORICINO contaminations bkg = 10-3 10-4 cts/(kev.kg.y) T 1/2 ~ 10 26 yrs with only 1 cuoricino-like tower! (instead of 19 )

136 Xe TPC Experiments Several advantages to study Xenon Simplest and least costly bb isotope to enrich High bb2n half-life T 1/2 ( 136 Xe) ~ T 1/2 ( 76 Ge) ~ 2 10 21 yrs Natural candidate for TPC - Liq. TPC: EXO-200 - Gas TPC: NEXT Limitation: 2447 kev g-ray from 214 Bi, very close to Q bb = 2462 kev The energy resolution must be better than ~15 kev (0.6%) at Q bb

EXO-200 (WIPP, USA) Liq. Xe TPC (200 kg Xe, 80% enrich. 136 Xe) Fiducial Volume 76.5 kg 136 Xe Anti-correlation ionisation/scintillation E = 3.6 % FWHM @ Q bb ( E ~ 90 kev) 477.6 days (Sept. 2011 Sept. 2013), 100 kg.yr T 1/2 (bb0n) > 1.1 10 25 yrs (90% C.L.) Nature 510, 229 (2014) Bkg = (1.7 0.2 10-3 cts/(kev.kg.yr) 28 cts/(fwhm.yr) Radon ( 214 Bi) dominant bkg 2447 kev g-ray from 214 Bi, very close to Q bb = 2462 kev Next step: Radon suppression Future project: nexo with 5 tons 136 Xe

NEXT (CANFRANC, SPAIN) Gas Xe TPC ~ 100 150 kg Xe gas, >90% enrich. 130 Xe Electroluminescence technique for the TPC readout TDR, JINST 7 (2012) T06001 Better Energy resolution Target: E = 1 % FWHM @ Q bb ( E ~ 25 kev) Results of the NEXT-DEMO (a worst geometry): 1.7% FWHM at 511 kev (extrapolating to 0.77% FWHM at 2.5 MeV) has been obtained Electron tracking by topological detection of the characteristic blob at the end of the track NEXT-DEMO: electrons are identified in 98.5% of the cases JINST 8 P04002 (2013) (arxiv:1211.4838)

Large Liquid Scintillators Reuse the available large liquid scintillator n experiments by loading 136 Xe or nat Te KamLAND KamLAND-Zen with 136 Xe SNO SNO+ with nat Te Advantage: one can measure a large mass of bb isotope Limitation: the background is relatively high and the energy resolution is modest

Kamland-Zen 320 kg of 136 Xe loaded in 13 tons Liq. Scint. Xe concentration ~ 2.45 % (~700 kg 136 Xe available in Kamioka mine) Energy resolution fwhm = 10 % (~240 kev) at Q bb Fiducial volume ~ 43 % KamLAND-Zen Phase I 110 Ag contamination from Fukushima fallouts

Kamland-Zen KamLAND-Zen Phase II: 114.8 days (Dec. 2013 May 2014) 383 kg 136 Xe LS purification Xe purification Film surface cleaning by LS flow 110 Ag reduction factor > 10 bkg ~ 10 cts / (fwhm.yr) R<1m Phase I: T 1/2 (0n) > 1.9 10 25 y Phase II: T 1/2 (0n) > 1.3 10 25 y Phases I+II: T 1/2 (0n) > 2.6 10 25 y (90% C.L.) Next steps KamLAND-Zen Next Phase (funded): New inner balloon with 800 kg of load 130 Xe T 1/2 (bb0n) > 10 26 yrs KamLAND2-Zen High energy resolution with pressurized Xenon

SNO+ SNO detector filled with liquid scint. and load 130 Te 130 Te large nat. abundance (34%) : 0.3% nat Te in 1 kt LS ~ 800 kg 130 Te Fiducial volume ~20% 160 kg 130 Te High light yield of loaded Te liquid scintillator: Energy resolution E ~ 8 % at Q bb High T 1/2 (bb2n) : bb2n bkg reduced LS must be ultra radiopure in 238 U and 232 Th (~BOREXINO) Solar 8 B n is the ultimate bkg! 2 years of data First data foreseen end of 2014 T(bb0n) = 6 10 24 y

NEMO Tracko-Calo

NEMO, a tracko-calo approach NEMO combines a tracking detector and a calorimeter Direct reconstruction of the two electrons Can distinguish a possible bb0n signal to a unknown g line Direct measurement of the various components of background Bkg measured separately with dedicated event topology (e-, e+, g, a)

NEMO-3 (LSM Modane) Running from Feb. 2003 until Jan. 2011 in Modane Underground Laboratory (4800 m.w.e.) Source: ~ 20 m 2 of bb sources foils (~50 mg/cm 2 ) bb0n: 7 kg of 100 Mo, 1 kg of 82 Se bb2n: 0.4 kg 116 Cd, 37 g 150 Nd, 9 g 96 Zr, 7 g 48 Ca Tracking detector: drift cells in Geiger mode Calorimeter: ~ 2000 plastic scint. + 5 PMTs E/E ~ 15% (FWHM) @ 1 MeV Display of a bb0n candidate

NEMO-3 (LSM Modane) 34.3 kg.yr 100 Mo, T 1/2 (0n) > 1.1 10 24 yrs (90% C.L.) 700.000 bb events E TOT (MeV) NEMO-3 bkg 0.4 cts/(kg.yr) cos

SuperNEMO (LSM Modane) NEMO-3 extrapolation 100 kg of 82 Se to reach T 1/2 (bb0n) 10 26 years Bkg must be reduced by a factor ~ 40 Source: ~ 5 3 m 2 foil (40 mg/cm 2 ): 82 Se, 150 Nd, 48 Ca Tracking: Drift cells in Geiger mode Calorimeter: plastic scintillators + 8" PMT s 20 modules to be installed in the future extension of LSM First module (demonstrator) in construction Start data end 2015 in Modane Target: bkg < 10-2 cts/(kg.yr) in the bb0n ROI NEMO-3 bkg = 0.4 cts/(kg.yr)

CONCLUSIONS 2010 2020: New generation of bb experiments with few 100 kg of isotope Experiments using 136 Xe provided already first results with ~100 kg! Kamland-Zen (using available large liquid scint. detector) EXO-200 Liq. TPC New experiments started GERDA Phase 1: results in Summer 2013 Target bkg Phase-1 has been reached : bkg ~ 0.01 cts/(kev.kg.y) GERDA Phase 2 is starting: Target bkg ~ 0.001 cts/(kev.kg.yr) with 50 kg 82 Ge CUORE-0 : preliminary results bkg is at least 2 times too high New experiments in construction LUCIFER & LUMINEU: scintillating bolometer to reach bkg 0.001cts/(keV.kg.yr) Can measure Se and Mo SNO+ with natural Te: can start measuring ~ 160 kg of 130 Te in 2015 And even larger mass (up to 8 tons?) if the bkg is low enough SuperNEMO with the direct detection of the two emitted e - NEXT-100 (gaseous Xe TPC)

SUMMARY Experiment Isotope Mass (kg) 0n E@Q bb (fwhm) (kev) bkg@q bb cts/(fwhm.y) T 1/2 (0n) limit (10 26 yrs) m n limit (ev) Start Data GERDA-I GERDA-II GERDA-III 76 Ge 20 50 200 0.9 3.5 1.5 0.15 0.6 0.2 2. 10. 200 500 40 105 30 75 Published 2014? Majorana 76 Ge 30 0.9 3 0.15 1 60 150 2014 CUORE 130 Te 200 0.9 5 35 1 45 95 2015 ZnSe (1 tower) ZnMoO 4 (1 tower) ZnMoO 4 (19 towers) Kamland-Zen Next-Phase SNO+ EXO-200 Rn removed 82 Se 100 Mo 100 Mo 136 Xe 130 Te 130 Xe 19 12 230 380 800 800 (0.3%) 8000 (3%) 160 0.9 0.4 0.2 0.5 5 240 200 90 0.15 0.15 2.7 10 Few tens 28? 1. 0.7 10 0.26 1 0.1 0.6 50 120 35 95 10 25 120 280 35 85 190 450 75 185 R&D Published 2015 2014 2016 Published 2015 NEXT-100 130 Xe 90 0.3 25 0.5 1 60 145 2015 SuperNEMO 82 Se 82 Se 150 Nd 7 100 100 0.2 200 0.07 1 1 0.07 1 1 190 460 50 120 30 115 2015?? N.M.E. from Duek et al., Phys. Rev. D 83 (2011) In italic: performances already achieved Otherwise, numbers must be demonstrated

EXTRA SLIDES

Current best limits obtained in bb0n search Isotope Experiment Technique Mass of isotope bb0n Bkg cts /(kg.y.fwhm) T 1/2 (0n) Limit (90%) m n (ev) Min. Max. 48 Ca CANDLES Scintillation 0.01 kg ~ 1 - > 5.8 10 22 3.55 9.91 76 Ge GERDA Ionisation 20 kg ~ 1 0.05 > 2.1 10 25 0.2 0.5 82 Se NEMO-3 Tracko-calo 1 kg ~ 0.1 0.3 > 3.2 10 23 0.85 2.08 100 Mo NEMO-3 Tracko-calo 7 kg ~ 0.1 0.5 > 1.0 10 24 0.31 0.79 116 Cd Solotvina Scintillation 80 g ~ 1 - > 1.7 10 23 1.22 2.30 130 Te CUORICINO Bolometer 10 kg ~ 1 1.1 > 2.8 10 24 0.27 0.57 136 Xe EXO-200 TPC Xe liq 160 kg ~ 0.4 0.025 > 1.1 10 25 0.19 0.45 136 Xe Kamland-Zen Liq. Scint. 130 kg ~ 0.5 110m Ag > 2.6 10 25 0.13 0.31 150 Nd NEMO-3 Tracko-calo 0.04 kg ~ 0.1 0.5 >1.8 10 22 2.35 8.65

Natural radioactive chains

Low Q bb Low 0n 34% nat. abundance Large available mass Low Qbb Bi g ray at

Experiment GERDA-I GERDA-II GERDA-III Isotop e 76 Ge Mass (kg) 20 50 200 0n E@Q bb (fwhm) (kev) 0.9 3.5 bkg@q bb cts/(fwhm. y) 1.5 0.15 0.6 T 1/2 (0n) limit (10 26 yrs) 0.2 2. 10. m n limit (ev) 200 500 40 105 30 75 Start Data Publishe d 2014? Majorana 76 Ge 30 0.9 3 0.15 1 60 150 2014 CUORE 130 Te 200 0.9 5 35 1 45 95 2015 ZnSe (1 tower) ZnMoO 4 (1 tower) ZnMoO 4 (19 towers) Kamland-Zen Next-Phase SNO+ EXO-200 Rn removed 82 Se 100 Mo 100 Mo 136 Xe 130 Te 19 12 230 380 800 800 (0.3%) 8000 (3%) 0.9 5 0.15 0.15 2.7 0.4 240 10 130 Xe 160 0.5 90 1. 0.7 10 0.26 1 50 120 35 95 10 25 120 280 35 85 0.2 200 Few tens 28? 0.1 0.6 190 450 75 185 R&D Publishe d 2015 2014 2016 Publishe d 2015 NEXT-100 130 Xe 90 0.3 25 0.5 1 60 145 2015 N.M.E. from Duek et al., Phys. Rev. D 83 (2011) In italic: performances already achieved Otherwise, numbers must be demonstrated 82 SUMMARY