On the Host Lattice Dependence of the 4f n-1 5d 4f n Emission of Pr 3+ and Nd 3+

Similar documents
New blue and green emitting BAM Phosphors for Fluorescent Lamps and Plasma Displays

Transition Metals and Coordination Chemistry

Crystal Field Theory

Dr. Fred O. Garces Chemistry 201

Lecture 18 Luminescence Centers

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

AN ABSTRACT OF THE DISSERTATION OF

Transition Metal Complexes Electronic Spectra 2

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

3 points in total correct molar mass 1 point, correct equation 1 point, correct numerical calculation starting from correct equation 1 point

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Earth Materials I Crystal Structures

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20

8. Relax and do well.

NAME: SECOND EXAMINATION

Crystal Field Theory

RDCH 702 Lecture 4: Orbitals and energetics

Atomic Structure & Interatomic Bonding

Made the FIRST periodic table

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2.

Chemistry Instrumental Analysis Lecture 11. Chem 4631

Vacuum ultraviolet 5d-4f luminescence of Gd 3+ and Lu 3+ ions in fluoride matrices

Nucleus. Electron Cloud

2018 Ch112 problem set 6 Due: Thursday, Dec. 6th. Problem 1 (2 points)

NAME: FIRST EXAMINATION

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

Ce3+-doped Garnet Phosphors: Composition Modification, Luminescence Properties and Applications

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

Intensity (a.u.) 2Theta (degrees) Supplementary data O 3 BO 3. Sup-Figure 1: Room temperature XRD patterns of KCaBO 3 :Eu 3+ sample treated at 500 ºC.

Orbitals and energetics

Blue-Light-Emitting Eu2+ Doped Lithium Calcium Silicate Phosphor for White-Light-Emitting-Diode Abstract: KEYWORDS: . 1.

Chapter 8 Test Study Guide AP Chemistry 6 points DUE AT TEST (Wed., 12/13/17) Date:

Crystal Structure and Chemistry

Guide to the Extended Step-Pyramid Periodic Table

CHEM 172 EXAMINATION 1. January 15, 2009

7. Relax and do well.

"What Do I Remember From Introductory Chemistry?" - A Problem Set

PERIODIC TABLE OF THE ELEMENTS

Supplementary Information

Topic 2. Structure and Bonding Models of Covalent Compounds of p-block Elements

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

1 of 5 14/10/ :21

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

PART 1 Introduction to Theory of Solids

8. Relax and do well.

Inorganic Exam 1 Chm October 2010

CHEM 10113, Quiz 5 October 26, 2011

Molecular Orbital Theory and Charge Transfer Excitations

Mock Exam Which elements have a single s electron in their outermost shell? a. Na, Al, Ar b. Cl, I, Br c. Cl, O, N d.

Chem 1102 Semester 2, 2011!

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5

Molecular Orbital Theory and Charge Transfer Excitations

Inorganic Chemistry I (CH331) Lanthanides and Actinides

Chapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions

Electronic Spectra of Complexes

Solutions and Ions. Pure Substances

Periodicity & Many-Electron Atoms

PART CHAPTER2. Atomic Bonding

Transition Metals. Monday 09/21/15. Monday, September 21, 15

CHEM 130 Exp. 8: Molecular Models

Inorganic Phosphor Materials for Lighting

Example 7.1 Wavelength and Frequency

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

EPSC501 Crystal Chemistry WEEK 5

NAME: 3rd (final) EXAM

M14/4/CHEMI/SPM/ENG/TZ1/XX CHEMISTRY. Monday 19 May 2014 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

CHEMICAL BONDING. Dear Reader


Optical Properties and Materials

If anything confuses you or is not clear, raise your hand and ask!

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms

Chemistry 1000 Lecture 26: Crystal field theory

Topic 3: Periodic Trends and Atomic Spectroscopy

Supplementary Materials

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

CHEM 107 (Spring-2005) Exam 3 (100 pts)

CHM 101 PRACTICE TEST 1 Page 1 of 4

Hydrothermal synthesis and characterization of undoped and Eu doped ZnGa 2 O 4 nanoparticles

Chem 673, Problem Set 5 Due Thursday, November 29, 2007

1. What is the phenomenon that occurs when certain metals emit electrons when illuminated by particular wavelengths of light? a.

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni

Chapter 25 Transition Metals and Coordination Compounds Part 2

Lecture 6 - Bonding in Crystals

Chemistry 201: General Chemistry II - Lecture

Optical and Photonic Glasses. Lecture 15. Optical Properties - Polarization, Absorption and Color. Professor Rui Almeida

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook

25 Mn Ni Co Rh Fe Ru Os Uns (262) Une (266) 195.

Chapter 3: Stoichiometry

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

CDO AP Chemistry Unit 5

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

Alfred University theses are copyright protected and may be used for education or personal research only. Reproduction or distribution in part or

Phys 570. Lab 1: Refractive index and fluorescence of rare earth ions in borate glasses

Review Outline Chemistry 1B, Fall 2012

2008 Brooks/Cole 2. Frequency (Hz)

Bonding in Solids. What is the chemical bonding? Bond types: Ionic (NaCl vs. TiC?) Covalent Van der Waals Metallic

8. Relax and do well.

Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports

Transcription:

On the Host Lattice Dependence of the 4f n-1 5d 4f n Emission of Pr 3+ and Nd 3+ T. Jüstel, W. Mayr, P. J. Schmidt, D.U. Wiechert e-mail to: thomas.juestel@philips.com 1 st Int. Conf. Sci. Tech. Emissive Displays and Lighting San Diego, CA, November 2001

Outline Introduction - Discharge lamps Down conversion phosphors Luminescence spectra of Ce 3+, Nd 3+, and Pr 3+ Host lattice dependence of the Pr 3+ luminescence Comparison between Pr 3+ and Nd 3+ Conclusions

Discharge Lamps Mercury Sodium Rare-gas Sulphur Low pressure p < 10 mbar High pressure p > 1 bar Low pressure Low pressure High pressure Hg / Ar Hg / Ne 185 + 254 nm (Compact) Fluorescent lamps Phosphors Hg / Ar Metal halide lamps Single line emitter NaX / TlX / InX, X=I,Br Multi-line emitter NaX/ TlX/ LnX 3 (Ln = Dy, Ho, Tm, Sc) SnX 2 Na / Ar / Ne 589 nm High pressure Na / Hg / Xe Ne 74 nm Medium pressure (DBD, PDP) Xe / Ne 147 + 172 nm Phosphors S 2

Evolution of Discharge Lamp Efficiency

Efficiency vs. Colour Rendition of Light Sources a Low Pressure Sodium b High Pressure Sodium c Fluorescent d Compact Fluorescent e High Pressure Mercury f Halogen g Incandescent

Light Generation in Hg low-pressure Discharges Mechanism 254 nm 1,0 cathode e - 0,8 e - + Hg Hg + + 2 e - 0,6 Hg + + e - Hg*( 3 P 1, 1 P 1 ) Hg*( 3 P 1, 1 0,4 P 1 ) Hg + hν UV 0,2 185 nm hν UV + phosphor hν visible 365 nm 0,0 100 200 300 400 Emission intensity [a.u.] Wavelength [nm] Quantum deficit: QD = [λ discharge /λ phosphor ] = 0.46 ε = ε discharge * QD*QE ε discharge = 70% ε = 30% (100 lm/w el ) Highly efficient, but Hg is a toxic metal!

Light Generation in Xe Discharges Xe + e - Xe( 3 P 1 ) + e - Xe** Xe( 3 P 2 ) + e - Xe** Xe( 3 P 1 ) + hν (828 nm) Xe( 3 P 2 ) + hν (823 nm) Xe( 3 P 1 ) Xe + hν (147 nm) Xe( 3 P 1 ) + Xe + M Xe 2 * + M Xe 2 * 2 Xe + hν (150/172 nm) Discharge efficiency ~ 65% (elaborated driving scheme) 147 Wavelength / nm 172 Emission spectrum High Pressure 2 nd Continuum 1 st Continuum Resonance Line Low Pressure Energy 3Σ u + Xe* 2 - Excimer Energy Level Diagram 1Σ u + 1Σ g + 2 nd 1 u 3P 1 + 1 S 0 1 st Continuum 3P 2 + 1 S 0 Resonance Line 1S 0 + 1 S 0 2 3 4 5 6 7 Internuclear Distance (Å) B A X

Xe 2* -Excimer Discharge Lamps 185 + 254 nm Low Pressure 147 172 2 nd Continuum 1 st Continuum Resonance Line Wavelength [nm] 150 + 172 nm 450 nm 545 nm 610 nm Lamp tube Features of Xe 2 *-excimer lamps Hg free Instant light Temperature independent Phosphors for Xe-excimer lamps High band gap host lattice 4f-5d absorption of free ion Nd 3+ 72000 cm -1 (140 nm) Dimmable and fast switching cycles Pr 3+ 62000 cm -1 (160 nm) Large quantum deficit: QD = 0.31 Ce 3+ 50000 cm -1 (200 nm)

Photon-Cascade Emission (Pr 3+ ) YF 3 :Pr, NaYF 4 :Pr (Sommerdijk 1974) YF 3 :Tm (Pappalardo 1976) In oxidic lattice possible if E(5d states) > E( 1 S 0 ) weak crystal field Pr 3+ on lattice sites with high CN (> 8) LaMgB 5 O 10 :Pr, LaB 3 O 6 :Pr (Srivastava 1996) Down-conversion efficiency < 140% Absorption via 5d states of Pr 3+ (e.g. at 185 nm)

Down Conversion by interacting Ions - LiGdF 4 :Eu Energy level scheme Gd 202 nm Gd** Gd** + Eu Eu* CR Eu* + Gd* Eu + hν ET Gd* + Eu Gd + Eu* Eu* Eu + hν Down-conversion efficiency DCE = 195% (Meijerink 1996) Similar in LiGdF 4 :Er,Tb

Efficiency of LiGdF 4 :Eu Excitation and reflection spectrum Emission intensity [a.u.] 1,0 0,8 0,6 0,4 0,2 202 nm 273 nm Exc. wave. [nm] QE [%] 160 0.23 202 0.32* 273 0.64 *including down-conversion effect 0,0 150 200 250 300 350 Wavelength [nm] (J. Luminescence 92, 2001, 245) Low efficiency at 202 nm due to strong host lattice absorption Inefficient energy transfer from host lattice to 6 G J states of Gd 3+

Efficiency of Down-conversion Phosphors Maximum phosphor quantum yield 100 QEact100 QEact90 QEact80 80 QEact70 QEact60 QEact50 60 QEact40 QEact30 40 QEact20 QEact10 20 Max. external quantum efficiency 0 0,01 0,1 1 10 100 Absorption: A = A Gd3+ + A host latttice External quantum efficiency QE ext QE ext = QE Eu3+ /(A Gd3+ + A host lattice ) = QE Eu3+ /(1+A host lattice /A Gd3+ ) Weak absorption of Gd 3+ results in low external quantum efficiency Sensitisation is required to improve absorption + external QE Sensitiser must have high-lying states above 202 nm A host lattice /A Activator

Luminescence Spectra of Ce 3+, Nd 3+ and Pr 3+ 4f n -4f n-1 5d 1-4f n luminescence First spin-allowed 4f n -4f n-1 5d 1 transition of Ln 3+ : E(Nd 3+ ) = E(Pr 3+ ) + 10000 cm -1 = E(Ce 3+ ) + 22000 cm -1 (Dorenbos 2000) Emission band position indicates position of lowest 4f5d level: YPO 4 :Nd YPO 4 :Pr YPO 4 :Ce 190 nm 235 nm 335 nm Y 3 Al 5 O 12 :Nd Y 3 Al 5 O 12 :Pr Y 3 Al 5 O 12 :Ce visible and IR lines UV bands + visible lines 540 nm

Spectra of Pr 3+ Phosphors YF 3 :Pr YPO 4 :Pr Y 2 O 3 :Pr 1,0 1,0 1,0 0,8 0,8 0,8 0,6 0,6 0,6 0,4 0,4 0,4 0,2 0,2 0,2 0,0 100 200 300 400 500 600 700 Wavelength [nm] 4f 2-4f 2 line emission 0,0 100 200 300 400 500 600 700 Wavelength [nm] 4f 1 5d 1-4f 2 band emission 0,0 100 200 300 400 500 600 700 800 Wavelength [nm] 4f 2-4f 2 line emission Although Pr 3+ is in all cases located on Y-sites, the luminescence spectra are much different from each other

Term Scheme of the free Pr 3+ Ion The energetic position of the lowest level of the 4f 1 5d 1 configuration governs the emission spectrum: E(4f 1 5d 1 ) > E( 1 S 0 ) line emission photon cascade emission E(4f 1 5d 1 ) < E( 1 S 0 ) band emission 4f 1 5d 1-4f 2 ( 3 H J, 3 F J ) E(4f 1 5d 1 ) << E( 1 S 0 ) line emission ( 3 P 0-3 H 4, 1 D 2-3 H 4,...)

Energy Distance of 4f and 5d States in Ln 3+ Free ion Nephelauxetic effect Crystal field 5d Co-valency 10 Dq 4f - Covalency (Ln 3+ - ligand bonds) reduces 4f-5d energy gap - Crystal-field splitting of the five 5d levels further reduces the 4f- 5d energy gap

Investigated Host Lattices composition mineral name crystal system CN YF 3 - orthorhombic 8 YPO 4 xenotime tetragonal 8 YBO 3 vaterite trigonal 8 Y 2 SiO 5 - monoclinic 6* Y 2 Si 2 O 7 yttrialite monoclinic 6 Y 3 Al 5 O 12 garnet cubic 8 Y 2 O 3 bixbyite cubic 6* all crystal data are from the ICSD database (* two Y-sites)

XRDs of Phosphors 1000 YPO 4 :Pr Y 3 Al 5 O 12 :Pr 900 YPO 4 :Pr 3+ (1%) (HB-7) 4000 Y 3 Al 5 O 12 :Pr 3+ UV-C14/99 800 Counts [s -1 ] 700 600 500 400 300 200 Counts [s -1 ] 3000 2000 1000 100 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 2 Theta 2 Theta 10 20 30 40 50 60 70 80 90 YPO 4 (PDF 09-0377) 10 20 30 40 50 60 70 80 90 Y 3 Al 5 O 12 (PDF 33-0040)) XRD Analysis: All investigated phosphors are of single phase

Pr 3+ Luminescence in YF 3 1,0 4f 1 5d 1 1 S 0-1 G 4 1 S 0-1 I 6 1 S 0-3 F 4 0,8 0,6 0,4 Host lattice 3 P 0-3 H 4 3 P 0-3 H 6, 3 F 2 0,2 distorted square antiprismatic E Y-F distances 4x 2.28 Å 2x 2.30 Å 2x 2.31 Å 0,0 100 200 300 400 500 600 700 Wavelength [nm] small crystal-field splitting low covalency (fluoride) E(4f 1 5d 1 ) > E( 1 S 0 ) Photon cascade emission (4f 2-4f 2 transitions)

3 H 5 Pr 3+ Emission in YPO 4 1,0 4f 1 5d 1 3 H 4 0,8 0,6 Host lattice 3 H 6 0,4 3 F J 0,2 E dodecahedral d x2-y2 d z2 d xy d xz d yz Y-O distances 4x 2.236 Å 4x 2.241 Å 0,0 100 200 300 400 500 Wavelength [nm] large crystal-field splitting low covalency (phosphate) E(4f 1 5d 1 ) < E( 1 S 0 ) UV-C band emission (235 nm) (4f 1 5d 1-4f 2 transitions)

Pr 3+ Emission in YBO 3 1,0 3 H 4 0,8 0,6 Host lattice 4f 1 5d 1 3 H 5 0,4 3 H 6 3 F J 0,2 E 0,0 distorted cubic 100 200 300 400 500 Y-O distances 6x 2.31 Å 2x 2.32 Å Wavelength [nm] medium crystal-field splitting medium covalency (borate) E(4f 1 5d 1 ) < E( 1 S 0 ) UV-C band emission (265 nm) (4f 1 5d 1-4f 2 transitions)

Pr 3+ Emission in Y 3 Al 5 O 12 1,0 Host lattice 4f 1 5d 1 3 P 0-3 H 4 E dodecahedral Y-O distances 4x 2.30 Å 4x 2.44 Å Emission intensity [a.u.] 0,8 0,6 0,4 0,2 4f 1 5d - 3 H J 0,0 100 200 300 400 500 600 700 Wavelength [nm] large crystal-field splitting high covalency (aluminate) E(4f 1 5d 1 ) << E( 1 S 0 ) UV band emission (320 nm) (4f 1 5d 1-4f 2 transitions)

Spectra of Pr 3+ UV Phosphors Excitation spectra Emission spectra LaPO 1,0 4 :Pr Y 3 Al 5 O 12 :Pr 1,0 LaPO 4 :Pr Y 3 Al 5 O 12 :Pr Emission intensity [a.u.] 0,8 0,6 0,4 0,2 Emission intensity [a.u.] 0,8 0,6 0,4 0,2 0,0 150 200 250 300 350 0,0 200 250 300 350 400 450 Wavelength [nm] Wavelength [nm] Energy of 4f 2-4f 1 5d 1 absorption edge LaPO 4 > YPO 4 > YBO 3 :Pr > Y 3 Al 5 O 12 4f 1 5d 1-4f 2 ( 3 H 4 ) emission band position LaPO 4 > YPO 4 > YBO 3 :Pr> Y 3 Al 5 O 12

Term Schemes of investigated Pr 3+ Phosphors Non-radiative relaxation into the 3 P J levels is observed if the lowest level of the 4f 1 5d 1 configuration is below 37000 cm -1

Impact of the Host Lattice - CF splitting Crystal field theory - ionic interaction with negative point charges Energy of d-orbital splitting depends on anion charge/anion radius (spectrochemical series) I - < Br - < Cl - < S 2- < F - < O 2- < N 3- < C 4- symmetry (co-ordination number and site symmetry) octahedral > cubic, dodecahedral, square antiprismatic > tetrahedral metal ligand distance (strong distance dependence) D = 35Ze/4R 5 R = cation-anion distance Z = valency of the anions e = electron charge

Impact of the Host Lattice - Covalency of the Ln 3+ -Oxygen Bonds Polarizibility (type) of anions sulphides > nitrides > oxides > fluorides Charge density on the surrounding (oxygen) anions: Basicity Type of network former: aluminates > silicates > borates > phosphates > sulphates AlO 5-4 SiO 4-4 BO 3-3 PO 3-4 SO 2-4 Degree of connectivity SiO 4-4 > Si 2 O 6-7 ~ Si 3 O 6-9

Example Covalent Character of ionic Bonds Type of network former YPO 4 Y 3+ O O-P-O O 3- low basicity Y 3 Al 5 O 12 Y 3+ tetrahedral AlO 5-4 + octahedral AlO 9-6 P 5+ withdraws more charge from the oxygen anions than Al 3+ tetrahedral PO 4 3- O 5- O-Al-O O O O O-Al-O O O 9- high basicity

Electron Population of the Oxide Anions YPO 4 Y 3 Al 5 O 12 4 x O(1) 7.248 4 x O(2) 7.193 low electron population gross populations from EHTB band structure calculations 4 x O(1) 7.528 4 x O(2) 7.504 high electron population

Comparison between Pr 3+ and Nd 3+ Emission spectra of Pr 3+ Emission spectra of Nd 3+ Emission intensity [a.u.] 1,0 YPO 4 :Pr YBO 3 :Pr 3 H 4 0,8 0,6 0,4 0,2 3 H 5 3 H 6 3 F 2 Emission intensity [a.u.] 1,0 0,8 0,6 0,4 0,2 4f 2 5d -> 4 I J -> 4 F J -> 4 G J 2 G(2) 9/2-2S+1 L J YPO 4 :Nd YBO 3 :Nd 0,0 200 250 300 350 400 Wavelength [nm] 0,0 150 200 250 300 350 400 Wavelength [nm] YPO 4 YBO 3 Pr 3+ ( 3 H 4 ) 235 nm (42600 cm -1 ) 265 nm (37600 cm -1 ) Nd 3+ ( 4 I J ) 190 nm (52600 cm -1 ) 210 nm (47600 cm -1 ) 5d-4f 5d-4f and 4f-4f (Nd 3+ )

Emission intensity [a.u.] 0,8 0,6 0,4 0,2 Pr 3+ and Nd 3+ in Y 3 Al 5 O 12 (YAG) Excitation and emission spectra YAG:Pr YAG:Nd Host lattice 3 P 1,0 4f 1 0-3 H 4 5d 4f 1 5d - 3 H J Emission intensity [a.u.] 1,0 0,8 0,6 0,4 0,2 Host lattice 4f 2 5d 0,0 100 200 300 400 500 600 700 Wavelength [nm] 0,0 100 200 300 400 500 600 700 Wavelength [nm] YAG:Pr YAG:Nd 5d-4f at 320 nm (31200 cm -1 ) and 4f-4f emission lines 4f-4f emission lines (emission from 2 F(2) J states)

Term Schemes of investigated Nd 3+ Phosphors Energy [10 3 cm -1 ] 60 50 40 30 20 10 0 YPO 4 :Nd YBO 3 :Nd Y 2 SiO 5 :Nd d-states 2 G(2) J 2 F(2) J 4 I 9/2 d-states 2 G(2) J d-states 2 F(2) J 4 I 9/2 2 G(2) J 2 F(2) J 4 I 9/2 Non-radiative relaxation into the 2 G(2) J levels is observed if the lowest level of the 4f 2 5d 1 configuration is below 52000 cm -1 above the ground state Fluorides, sulphates, and phosphates show 4f 2 5d 1 4 I J emission above 200 nm Nd 3+ can be used as sensitizer for the 202 nm Gd 3+ line

Sensitisation of GdPO 4 by Nd 3+ Excitation and emission spectrum of GdPO 4 :Nd 3+ 4f 3-4f 2 5d 1 1,0 6 P 7/2 -> 8 S 7/2 Emission intensity [a.u.] 0,8 0,6 0,4 0,2 -> 6 G J -> 6 I J 0,0 150 200 250 300 350 400 450 500 550 600 650 700 750 Wavelength [nm] Absorption maximum is at 170 nm Efficient energy transfer from Nd 3+ to Gd 3+ in GdPO 4 Nd 3+ sensitisation of Gd 3+ also works in other host lattices, e.g. LiGdF 4

Conclusions The position of the lowest lying (emitting) level of the 4f n-1 5d 1 configuration is governed by covalency of Ln 3+ -oxygen bonds: sulphates > phosphates > borates > silicates > aluminates > oxides Type of obtained emission Pr 3+ Nd 3+ fluorides, sulphates photon cascade 5d-4f phosphates 5d-4f 5d-4f borates, silicates 5d-4f 4d-4f and 4f-4f aluminates 5d-4f and 4f-4f 4f-4f oxides 4f-4f 4f-4f Nd 3+ might be a useful sensitizer for Gd-Eu and Gd-Er-Tb based down-conversion phosphors (CR remains a problem)

Acknowledgement Helmut Blankefort Synthesis Maya Doytcheva Synthesis Hartmut Lade VUV Spectroscopy Dieter Wädow VUV Spectroscopy