May 29, 2018, 8:45~10:15 IB011 Advanced Lecture on Semiconductor Electronics #7

Similar documents
MCTDH Approach to Strong Field Dynamics

Field due to a collection of N discrete point charges: r is in the direction from

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Chapter 3: Vectors and Two-Dimensional Motion

Time-Dependent Density Functional Theory in Condensed Matter Physics

b g b g b g Chapter 2 Wave Motion 2.1 One Dimensional Waves A wave : A self-sustaining disturbance of the medium Hecht;8/30/2010; 2-1

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

Name of the Student:

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Lecture 17: Kinetics of Phase Growth in a Two-component System:

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

Reflection and Refraction

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

Time-Dependent Density Functional Theory in Optical Sciences

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

s = rθ Chapter 10: Rotation 10.1: What is physics?

calculating electromagnetic

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

CHAPTER 10: LINEAR DISCRIMINATION

Lecture 5. Plane Wave Reflection and Transmission

Physics 201 Lecture 15

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si

Chapters 2 Kinematics. Position, Distance, Displacement

Molecular dynamics modeling of thermal and mechanical properties

2 shear strain / L for small angle

Muffin Tins, Green s Functions, and Nanoscale Transport [ ] Derek Stewart CNF Fall Workshop Cooking Lesson #1

Nonlinearity versus Perturbation Theory in Quantum Mechanics

Density Matrix Description of NMR BCMB/CHEM 8190

Maximum Likelihood Estimation

A L A BA M A L A W R E V IE W

Complex atoms and the Periodic System of the elements

Solution in semi infinite diffusion couples (error function analysis)

Motion of Wavepackets in Non-Hermitian. Quantum Mechanics

EMA5001 Lecture 3 Steady State & Nonsteady State Diffusion - Fick s 2 nd Law & Solutions

New integrated programmable optical diffractive element

Mechanics Physics 151

Density Matrix Description of NMR BCMB/CHEM 8190

Mechanics Physics 151

Physics 15 Second Hour Exam

Chapter 6: AC Circuits

The Feigel Process. The Momentum of Quantum Vacuum. Geert Rikken Vojislav Krstic. CNRS-France. Ariadne call A0/1-4532/03/NL/MV 04/1201

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

Remember: When an object falls due to gravity its potential energy decreases.

LOW-LOSS TUNING CIRCUITS FOR FREQUENCY-TUNABLE SMALL RESONANT ANTENNAS

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Determining Modern Energy Functional for Nuclei And The Status of The Equation of State of Nuclear Matter. Shalom Shlomo Texas A&M University

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

SCIENCE CHINA Technological Sciences

Response of MDOF systems

Basic molecular dynamics

Note: Please use the actual date you accessed this material in your citation.

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

HEAT FLUX ESTIMATION IN THIN-LAYER DRYING. Olivier Fudym Christine Carrère-Gée Didier Lecomte Bruno Ladevie

Non-sinusoidal Signal Generators

r r r r r EE334 Electromagnetic Theory I Todd Kaiser

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland

Chapter 2 Wave Motion

ESS 265 Spring Quarter 2005 Kinetic Simulations

( ) α is determined to be a solution of the one-dimensional minimization problem: = 2. min = 2

FI 3103 Quantum Physics

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

2-d Motion: Constant Acceleration

Motion in Two Dimensions

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

( )a = "t = 1 E =" B E = 5016 V. E = BHv # 3. 2 %r. c.) direction of induced current in the loop for : i.) "t < 1

2015 Sectional Physics Exam Solution Set

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN

2/20/2013. EE 101 Midterm 2 Review

Optimized Braking Force Distribution during a Braking-in- Turn Maneuver for Articulated Vehicles

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

T h e C S E T I P r o j e c t

Midterm Exam. Thursday, April hour, 15 minutes

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

Transcription: Messenger RNA, mrna, is produced and transported to Ribosomes

( ) () we define the interaction representation by the unitary transformation () = ()

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

MIMO Capacity for UWB Channel in Rectangular Metal Cavity

WAKEFIELD UNDULATOR RADIATION

PHYS 1443 Section 001 Lecture #4

Executive Committee and Officers ( )

Relative and Circular Motion

P a g e 5 1 of R e p o r t P B 4 / 0 9

CHAPTER II AC POWER CALCULATIONS

( r) E (r) Phasor. Function of space only. Fourier series Synthesis equations. Sinusoidal EM Waves. For complex periodic signals

Large scale magnetic field generation by accelerated particles in galactic medium

Lect. 13: Oblique Incidence at Dielectric Interface

Lecture 22 Electromagnetic Waves

Chapter 5. Long Waves

Transcription:

May 9, 8, 8:5~:5 I Advanced Lecue on Semconduco leconcs #7 # Dae Chape 7 May 9 Chape 5.Deec and Cae Cae Scaeng Ionzed mpuy scaeng, Alloy scaeng, Neual mpuy scaeng, Ineace oughness scaeng, Auge /

Scaeng mechansm and he low eld elecon mobly Mahessen s ule oal hp://www.ecse.p.edu/~schube/couse-cs-69%sdm-/%hmts.pd /

Mobly as a uncon o mpuy concenaon hp://www.ecse.p.edu/~schube/couse-cs-69%sdm-/%hmts.pd h nceasng mpuy concenaon, scaeng pobably ncease. Mobly deceases. /

Tempeaue dependence o AlGaAs/GaAs wo dmensonal elecon gas mobly Doped laye and channel laye ae sepaaed. Impuy scaeng can be mnmzed. hp://www..hose.ac.p/~asuga_/eceve.hm hp://www.ecse.p.edu/~schube/couse-cs-69%sdm-/%hmts.pd /

Hgh eld anspo A hgh elecc eld v d F. S. J. Peaon e al., Mae. Sc. ng., R55. 5/

Fomulazaon o anson pocess Fem s Golden ule Fem s Golden ule Geneal omalsm eplanng pobably o anson o pacle om one sae o anohe by peubaon ample o scaeng n semconduco *Impuy scaeng lecon s momenum changes bu enegy does no change. *Phonon scaeng oh momenum and enegy o elecon change. *Absopon o phoon lecons n sold s eced and sh o hghe enegy sae by absobng phoon enegy. *Sponaneous emsson Tanson om eced sae o gound sae by emng phoon *Smulaed emsson Tanson om eced sae o gound sae ggeed by elecc eld o lgh. avelengh and phase o emed phoon s he same as ha o ncden lgh. Scaeng by me-ndependen sac poenal Impuy scaeng, alloy scaeng. negy o pacle does no change by scaeng. Scaeng by me-dependen hamonc oscllao wh he em cos q scaeng by phonon o phoon. negy o pacle changes by q negy o phonon o phoon 6/

Fem s Golden ule Scaeng by sac poenal Impuy, alloy Hamlonan=Non peubaon em+peubaon em ae = Hˆ Hˆ ˆ gen sae and enegy o non peubaon em Hˆ, lecon sae beoe peubaon s. <, ep >, [ Hˆ ˆ ] pandng he wave uncon by non peubaon em a Subsung no Schlödnge eq. Delee non peubaon em [ Hˆ ˆ ] a a da ep a ˆ ep d Jus beoe peubaonnal us ae peubaon nal * Mulply om le and negae. Only em emans. da d da * ep a ep d a ˆ ep, ˆ d a ep ˆ Impuy avenumbe o elecon 7/

Fem s Golden ule Scaeng by sac poenal Impuy, alloy da d Fs ode appomaon da d ˆ I we assume o be consan, a ˆ ep ep a Pobably o ndng elecons n a nal sae s ˆ A =, nal value o a =δ Fem s Golden Rule ˆ a ep d ep d ˆ a ep sn ˆ ep sn sn sn c,sn c sn c d sn c d sn c a Fem s Golden Rule Tanson pobably om nal o nal sae s 8/

Fem s Golden ule Scaeng by vbang poenal Phonon scaeng, Absopon and emsson o phoon ep ˆep cos ˆ ˆ bang poenal wh he angula equency lecomagnec eld Lace vbaon Consan ep ep ep ep ep ep ˆ d d a Fem s Golden Rule Pobably o ndng elecon a nal sae s sn sn cos sn sn c c c c a Ths em can be negleced., N Tanson pobably by vbang poenal s 9/

Fem s Golden Rule Tanson pobably by sac poenal N Tanson pobably by vbang poenal N, /

Ionzed mpuy scaeng Sac poenal Poenal enegy o onzed mpuy e In a sold, caes havng oppose chage suound, heeoe poenal s moded. e need o omulae sceened Coulomb poenal. o e nd Toal poenal = poenal by mpuy + poenal by nduced cae o e nd Toal chage = mpuy chage +nduced cae chage Change o delecc consan by sceenng e nd ee Chage dsbuon n -space ep Posson s equaon e Fee cae densy s n. Induced cae chage s eo n e n e ep nd o T T eo n e o n e T T Change o delecc consan s e nd n e ee, T o o o lecon ollows olzmann s dsbuon. n e o e ne T /

Ionzed mpuy scaeng Sac poenal Sceened Coulomb poenal Chage densy o mpuy wh chage q e q q lecc poenal e Foue ansom o δ uncon s. q ne Tansom om eal space o space e q, e ee, T q o Invese Foue ansom e o q q ep d q d sn e o dcos e sn cos cos ddd q q o ep Inegal omula sn a d ep ab b lecosac poenal whou sceenng lecosac poenal wh sceenng /

Ionzed mpuy scaeng Sac poenal Change o poenal enegy by sceenng Poenal enegy ab. un ab. un hou sceeng p Sceenng coecen h sceenng ne T /

avenumbe o elecon How o calculae anson pobably =,? Sceened poenal enegy Ze ep Ma elemen o anson pobably * sn cos ep ep cos cos ep ep cos sn ep Ze Ze d d Ze d d Ze d d d e Ze d M Then, sn, Ze Ionzed mpuy scaeng Sac poenal /

Ionzed mpuy scaeng Sac poenal Relaaon me by sac poenal s d cos, Concenaon o mpuy s N. Aveage elaaon me s N Ze 8 * m e m* T Mobly s mp * 8m T ln * 8m T T Chap.6, p. Q: lecon mobly o hgh puy n-s a T=K s cm /s. I sngle dono Z= s doped wh an elecon concenaon o 7cm -, mobly deemned by mpuy scaeng s 95 cm /s. All he mpuy ae onzed. I double dono Z= s doped wh an concenaon o 7cm -, calculae he mobly a oom empeaue. 95 Z N,, o 89cm 95 / s 5/

Alloy scaeng Sac poenal Consde alloy A - A A all Sold lne :eal poenal oen lne :aveage poenal ach poenal s dened as A and. Poenal o alloys s all. negy deence n aom A and aom s all A A all all A A A A all Dsance o aom s. Scaeng poenal s,, all d e M M, Tanson pobably s Scaeng poenal speads n. e M N d 6/

9 N N ample o cc Lace consan s a. Dsance o neaes neghbo s a olume o un cell s a Tanson pobably s 9 all A N Tanson pobably a A a 9 all N Rao o A n un cell s ao o s In oal, 9 all o N Aveage elaaon me s.75 9 * T m all Tempeaue dependence * T m e alloy Q: Invese o he aveage elaaon me n Al. Ga.7 As a K s.s -. Caclulae mobly a 77 K and K deemned by alloy scaeng, assumng m*=.7m. s cm K s cm K /.6 77 /. Alloy scaeng Sac poenal 7/

Ohe sac poenal scaeng Neual mpuy scaeng and deec scaeng N M m * T.75 Suace oughness scaeng q Auge pocess and mpac onzaon * m e sc N dep d cos q q ep q N s T. Ando, J. Phys. Soc. Japan, 97766. Inal : wo elecons and one hole =Cn C:Auge coecen Fnal :one elecon evese pocess Avalanche phoodode Auge Impac onzaon In sead o emng phoon, ecess enegy s used o ece conducon band elecon. 8/

Auge coecen and bandgap K. A. ulashevch and S. Yu Kapov, Phys.Sa.Sol.c, 5866. 9/

Auge pocess =ogn o powe sauaon n opcal communcaon LD /

Impac Ionzaon=pncple o Avalanche Phoo Dode lecode SO I ph R H : Invesgae when mpac onzaon sas. h > g n + p e h + š p + a h + e c e v ne lecode h + n + p š b Avalanche egon a b Absopon egon Avalanche egon c a A pcoal vew o mpac onzaon pocesses eleasng HPs and he esulng avalanche mulplcaon. b Impac o an enegec conducon elecon wh cysal vbaons anses he elecons nec enegy o a valence elecon and heeby eces o he conducon band. 999 S.O. Kasap, Opoeleconcs Pence Hall a A schemac llusaon o he sucue o an avalanche phoodode APD based o avalanche gan. b The ne space chage densy acoss he phoodode. c The eld acoss he dode and he dencaon o absopon and mulplcaon egons. 999 S.O. Kasap, Opoeleconcs Pence Hall /