University of British Columbia Math 307, Final

Similar documents
The University of British Columbia Final Examination - December 13, 2012 Mathematics 307/101

University of British Columbia Math 307, Final

Math 307 Learning Goals. March 23, 2010

Math 307 Learning Goals

Math 307: Problems for section 3.1

(a) Compute the projections of vectors [1,0,0] and [0,1,0] onto the line spanned by a Solution: The projection matrix is P = 1

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

MA 265 FINAL EXAM Fall 2012

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

LINEAR ALGEBRA QUESTION BANK

Reduction to the associated homogeneous system via a particular solution

Conceptual Questions for Review

LINEAR ALGEBRA KNOWLEDGE SURVEY

EXAM. Exam 1. Math 5316, Fall December 2, 2012

MATH 220 FINAL EXAMINATION December 13, Name ID # Section #

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

MATH 1553 SAMPLE FINAL EXAM, SPRING 2018

Q1 Q2 Q3 Q4 Tot Letr Xtra

MATH 221, Spring Homework 10 Solutions

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MIT Final Exam Solutions, Spring 2017

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.

Math Linear Algebra Final Exam Review Sheet

APPLICATIONS The eigenvalues are λ = 5, 5. An orthonormal basis of eigenvectors consists of

Math 215 HW #11 Solutions

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

FINAL EXAM Ma (Eakin) Fall 2015 December 16, 2015

MATH 369 Linear Algebra

Quizzes for Math 304

FFTs in Graphics and Vision. The Laplace Operator

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

MAT Linear Algebra Collection of sample exams

Eigenvalues and Eigenvectors

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

Matrices related to linear transformations

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education

Applied Linear Algebra in Geoscience Using MATLAB

Fall 2016 MATH*1160 Final Exam

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELEC- TRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION.

PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them.

1 2 2 Circulant Matrices

Topic 2 Quiz 2. choice C implies B and B implies C. correct-choice C implies B, but B does not imply C

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

A Brief Outline of Math 355

Math 301 Final Exam. Dr. Holmes. December 17, 2007

is Use at most six elementary row operations. (Partial

Linear Algebra. and

Columbus State Community College Mathematics Department Public Syllabus

Math 2114 Common Final Exam May 13, 2015 Form A

homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45

University of Colorado at Denver Mathematics Department Applied Linear Algebra Preliminary Exam With Solutions 16 January 2009, 10:00 am 2:00 pm

Math Final December 2006 C. Robinson

Math 54 Second Midterm Exam, Prof. Srivastava October 31, 2016, 4:10pm 5:00pm, 155 Dwinelle Hall.

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question.

Review of Linear Algebra

I. Multiple Choice Questions (Answer any eight)

Projections and Least Square Solutions. Recall that given an inner product space V with subspace W and orthogonal basis for

Math 20F Final Exam(ver. c)

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

18.06 Problem Set 10 - Solutions Due Thursday, 29 November 2007 at 4 pm in

Math Computation Test 1 September 26 th, 2016 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge!

MATH 235. Final ANSWERS May 5, 2015

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.

2. Every linear system with the same number of equations as unknowns has a unique solution.

18.06 Problem Set 8 Solution Due Wednesday, 22 April 2009 at 4 pm in Total: 160 points.

1 Last time: determinants

The University of British Columbia Final Examination - April 20, 2009 Mathematics 152 All Sections. Closed book examination. No calculators.

MATH 223 FINAL EXAM APRIL, 2005

Archive of past papers, solutions and homeworks for. MATH 224, Linear Algebra 2, Spring 2013, Laurence Barker

AMS10 HW7 Solutions. All credit is given for effort. (-5 pts for any missing sections) Problem 1 (20 pts) Consider the following matrix 2 A =

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

Math 315: Linear Algebra Solutions to Assignment 7

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

Transpose & Dot Product

Problem # Max points possible Actual score Total 120

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Solutions to Final Exam

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS

Check that your exam contains 30 multiple-choice questions, numbered sequentially.

Name: Final Exam MATH 3320

MATH 1B03 Day Class Final Exam Bradd Hart, Dec. 13, 2013

Final Exam - Take Home Portion Math 211, Summer 2017

Linear Algebra Using MATLAB

Math Spring 2011 Final Exam

Transpose & Dot Product

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015

18.06SC Final Exam Solutions

Final Exam. Linear Algebra Summer 2011 Math S2010X (3) Corrin Clarkson. August 10th, Solutions

Transcription:

1 University of British Columbia Math 37, Final April 29, 214 12.-2.3pm Name: Student Number: Signature: Instructor: Instructions: 1. No notes, books or calculators are allowed. A MATLAB/Octave formula sheet is provided. 2. Read the questions carefully and make sure you provide all the information that is asked for in the question. 3. Show all your work. Answers without any explanation or without the correct accompanying work could receive no credit, even if they are correct. 4. Answer the questions in the space provided. Continue on the back of the page if necessary. Question Mark Maximum 1 2 2 13 3 16 4 1 5 14 6 12 7 15 Total 1

2 1. Consider the following types of matrices (all assumed to be square): (A) Matrices with a basis of eigenvectors (B) Matrices with distinct eigenvalues (C) Matrices with repeated eigenvalues (D) Hermitian matrices (E) Non-zero orthogonal projection [ ] matrices 1 a (F) Matrices of the form with a. 1 (a) Which types are always diagonalizable? (A), (B), (C), (D), (E), (F) (A), (B), (C), (D), (E), (F) (b) Which types are sometimes, but not always diagonalizable? (A), (B), (C), (D), (E), (F) (A), (B), (C), (D), (E), (F) (c) Which types always have an orthonormal basis of eigenvectors? (A), (B), (C), (D), (E), (F) (A), (B), (C), (D), (E), (F) (d) Which types always have an eigenvalue equal to 1? (A), (B), (C), (D), (E), (F) (A), (B), (C), (D), (E), (F) (e) Every matrix of type (A) is always also of type: (A), (B), (C), (D), (E), (F) (A), (B), (C), (D), (E), (F) (f) Every matrix of type (B) is always also of type: (A), (B), (C), (D), (E), (F) (A), (B), (C), (D), (E), (F) (g) Every matrix of type (C) is always also of type: (A), (B), (C), (D), (E), (F) (A), (B), (C), (D), (E), (F) (h) Every matrix of type (D) is always also of type: (A), (B), (C), (D), (E), (F) (A), (B), (C), (D), (E), (F)

3 (i) Every matrix of type (E) is always also of type: (A), (B), (C), (D), (E), (F) (A), (B), (C), (D), (E), (F) (j) Every matrix of type (F) is always also of type: (A), (B), (C), (D), (E), (F) (A), (B), (C), (D), (E), (F)

4 2. We wish to interpolate the points (x 1, y 1 ), (x 2, y 2 ) and (x 3, y 3 ) with x 1 < x 2 < x 3 using a function of the form a 1 x 2 + b 1 x + c 1 for x 1 < x < x 2 f(x) = a 2 x 2 + b 2 x + c 2 for x 2 < x < x 3 (a) Write down the equations satisfied by a 1, b 1, c 1, a 2, b 2, c 2 when f(x) is continuous and passes through the given points. x 2 1a 1 + x 1 b 1 + c 1 = y 1 x 2 2a 1 + x 2 b 1 + c 1 = y 2 x 2 2a 2 + x 2 b 2 + c 2 = y 2 x 2 3a 2 + x 3 b 2 + c 2 = y 3 (b) Write down the equation satisfied by a 1, b 1, c 1, a 2, b 2, c 2 when f (x) is continuous at x = x 2. 2x 2 a 1 + b 1 2x 2 a 2 b 2 = (c) Write down the matrix A and the vector b in the matrix equation Aa = b satisfied by a = [a 1, b 1, c 1, a 2, b 2, c 2 ] T when the conditions of both (a) and (b) are satisfied and when x 1 =, x 2 = 1, x 2 = 2, y 1 = 1, y 2 = 3, y 3 = 2. Explain why this system of equations does not have a unique solution. 1 1 1 1 1 3 A = 1 1 1 and b = 3. Since A is a 5 6 matrix its null space 4 2 1 2 2 1 2 1 must be at least one dimensional. This implies any solution will not be unique.

5 [4] (d) Let A and b be as in (c) and assume they have been defined in MATLAB/Octave. Using that a=a\b computes a solution (even if it is not unique) and n=null(a) computes a vector in N(A), write the MATLAB/Octave code that computes and plots two different interpolating functions of the form f(x) satisfying the conditions in (a) and (b). a=a\b; n=null(a); X1=linspace(,1,1); plot(x1,polyval(a(1:3),x1)) hold on X2=linspace(1,2,1); plot(x2,polyval(a(4:6),x2)) a1=a+n X1=linspace(,1,1); plot(x1,polyval(a1(1:3),x1)) hold on X2=linspace(1,2,1); plot(x2,polyval(a1(4:6),x2)) hold off

6 3. Consider the plane S defined by 2u 3v + w =, and recall that the normal to this plane is the vector a = [2, 3, 1]. (a) Compute the projections of vectors [1,, ] and [, 1, ] onto the line spanned by a. 4 6 2 The projection matrix is P = 1 a aa T = 1 2 14 6 9 3 so the projections are 2 3 1 1 4 6 p 1 = P = 1 14 6 and p 2 = P 1 = 1 14 9. 2 3 [4] (b) Compute the projections of vectors [1,, ] and [, 1, ] onto the subspace defined by S. What is the inner product of each of these projections with [2, 3, 1]? 1 The complementary projection is Q = I P so the projections are q 1 = (I P ) = 1 4 1 6 6 1 14 6 = 1 14 6 and q 2 = (I P ) 1 = 1 1 14 9 = 1 14 5 The inner product 2 2 3 3 of each of these projections with [2, 3, 1] is zero.

7 (c) Find a basis for the subspace of R 3 defined by S. What is the dimension of this subspace? The vectors q 1 and q 2 form a basis. The dimension of this subspace is 2. [6] (d) The reflection of vector x across a subspace is (2P I)x where I is the identity matrix and P is the matrix projecting x onto the subspace. i. Draw a sketch to show why this definition of reflection makes sense. ii. What is the reflection of [1,, ] in plane S? iii. What is the matrix (2P I) 2? i. [sketch] 1 1 6 ii. The matrix P in this question is the Q of part (b). (2Q I) = 2q 1 = 1 14 12 4 iii. (2P I) 2 = 4P 2 4P + I = 4P 4P + I = I This makes sense because reflecting twice results in the original vector.

8 4. Consider the following bivariate data: x y -1 1 1 3 1 (a) Draw a sketch showing the approximate least-squares straight-line fit y = ax + b to this data. [sketch] [4] [ ] a (b) Write down the least squares (or normal) equation satisfied by b [ ] 1 1 The equation is A T a A = A T y where A = 1 1 and y = b 3 1 [ ] [ ] [ ] 11 3 a 4 =. 3 3 b 2 1. Explicitly 1 (c) What quantity is minimized by the solution to the equation in (b)? [ ] a The minimized quantity is A y 2 = ( a + b ) 2 + (a + b 1) 2 + (3a + b 1) 2. b

9 5. Consider L 2 [a, b], the set of square-integrable functions on the interval x [a, b]. (a) Why do we say that the basis functions e 2πinx/(b a) for n Z are orthogonal? For n m the inner products e 2πinx/(b a), e 2πimx/(b a) = b a e 2πi(m n)x/(b a) dx = ((b a)/2πi(m n))(e 2πi(m n)b/(b a) e 2πi(m n)a/(b a) ) = ((b a)/2πi(m n))e 2πi(m n)a/(b a) (e 2πi(m n)(b a)/(b a) ) 1) = ((b a)/2πi(m n))e 2πi(m n)a/(b a) (1 1) =. (b) Under what conditions on a and b are these functions orthonormal? functions for L 2 [a, b] that are orthonormal for any choice of a and b. We have e 2πinx/(b a) 2 = = b a b a e 2πinx/(b a) 2 dx 1dx = b a. Propose a set of basis so they are normalized if b a = 1. The functions 1 b a e 2πinx/(b a) are always orthonormal.

1 (c) Suppose a =, b = 1 and consider the function 1, x < 1/2, f(x) = 1, 1/2 x 1. Write down (but don t bother evaluating) the integral you d need to do to compute the Fourier coefficients c n for f(x). c n = 1 e 2πinx f(x)dx = 1/2 1 e 2πinx dx e 2πinx dx 1/2 (d) Are the quantities c n c n purely real, purely imaginary, or neither? Why? c n c n = 1 is purely imaginary, since f(x) is real. (e 2πinx e 2πinx )f(x)dx = 1 ( 2i) sin(2πnx)f(x)dx (e) What is the sum n= c n 2, where c n are the Fourier coefficients of the function in part (c)? By Parseval s formula this sum is equal to 1 f(x) 2 dx = int 1 dx = 1.

11 6. Starting with initial values x and x 1, let x n for n = 2, 3,... be defined by the recursion relation x n+1 = ax n x n 1, where a is a real number. (a) When this recursion relation is written in matrix form X n+1 = AX n, what are A and X n? [ ] [ ] a 1 x n+1 A = and X n = 1 x n (b) Find the eigenvalues and eigenvectors of A. What is det(a) and what does it tell you about the eigenvalues? The characteristic polynomial is λ 2 aλ + 1 = so the eigenvalues are The eigenvectors are λ ± = a ± a 2 4. 2 [ ] λ ± v ± 1 The determinant is det(a) = 1. this tells us that λ + λ = 1.

12 (c) In some applications we are interested in solutions x n where lim n x n =. Find non-zero initial conditions x and x 1 that give rise to such a solution when a = 3. When a = 3 the eigenvalues are real and positive. Since λ + λ = 1 we know the smaller one λ must be less than 1. Thus we choose initial conditions to be the corresponding eigenvector, i.e., [ x 1 x ] = [ (3 5)/2 1 ]. (d) For which values of a do the solutions to this recursion stay bounded, neither growing or decaying as n? (You may disregard values of a for which A has repeated eigenvalues). When the eigenvalues have a non-zero imaginary part then λ = λ + so λ + 2 = λ 2 = 1. In this case the solutions all stay bounded. This happens when a 2 < 4 or a < 2. When a = 2 then A has repeated eigenvalues λ + = λ = 1. We are ignoring this case. When a > 2 then the eigenvalues are distinct and real. In this case one eigenvalue has absolute value > 1 and the other has absolute value < 1, so there are both growing and decaying solutions.

13 7. (a) Write down the definition of a stochastic (or Markov) matrix. An n n matrix is stochastic if (i) all entries are non-negative and (ii) the entries in each column sum to 1. (equivalently (i) all entries lie in the interval [, 1] and (ii) the entries in each column sum to 1.) [5] (b) What can you say about the relative sizes of Sv 1 and v 1 for a stochastic matrix S? Explain how this implies that all the eigenvalues λ of a stochastic matrix have λ 1. Is it possible that all eigenvalues have λ < 1? Give a reason. What is S 1 (i.e., the matrix norm when both input and output are measured with the 1-norm, also denoted S 1,1 )? We know a stochastic matrix S does not increase the 1-norm, that is, for any vector v, Sv 1 v 1. If λ is an eigenvalue with eigenvector v then Sv = λv and so Sv 1 = λv 1 = λ v 1. Thus the inequality implies λ v 1 v 1. Since v 1 we can divide to obtain λ 1. Every stochastic matrix has 1 as an eigenvalue, therefore it is not possible that all eigenvalues have λ < 1. The matrix norm S 1 = 1 since the inequality above implies that S 1 1 and the fact that 1 is an eigenvalue implies that S 1 1 (c) What can you say about the eigenvalues of a stochastic matrix S if lim n S n does not exist. Give an example of a stochastic matrix like this. [ ] In this case there must be at least two eigenvalues on the unit circle. An example is 1 S = which has eigenvalues 1 and 1. 1

14 [4] (d) Consider the following internet. 1 2 3 4 5 6 In this diagram the links depicted by dashed arrows are displayed prominently and are therefore twice as likely to be followed than the remaining links on the page. Write down (i) the stochastic matrix associated to this internet with no damping and (ii) the first column of the stochastic matrix associated to this internet with damping factor 1/2. Explain how you could use the eig command in MATLAB/Octave to compute the limiting probabilies of landing on each site. 1/3 1 1/6 2/3 1/4 1/6 With no damping: S = 1/3 1/2 1/6 1/3 1/6. 1/3 1/4 1/6 1/2 1/2 1/6 1/12... 5/12... With damping factor 1/2 the first column of S is S = 1/12... 3/12.... 1/12... 1/12... If S is defined in MATLAB/Octave, [V,D]=eig(S) computes the eigenvectors and eigenvalues. Assuming that the first diagonal entry of D is the eigenvalue 1, V(:,1)/sum(V(:,1)) computes the limiting probabilities.

15 pi π i 1 x = 3 define variable x to be 3 x = [1 2 3] set x to the 1 3 row vector (1,2,3) x = [1; 2; 3] set x to the 3 1 vector (1,2,3) [ ] A = [1 2; 3 4] set A to the 2 2 matrix 1 2 3 4 x(2) = 7 change x2 to 7 A(2,1) = change A21 to 3*x multiply each element of x by 3 x+3 add 3 to each element of x x+y add x and y element by element A*x product of matrix A and column vector x A*B product of two matrices A and B x.*y element-wise product of vectors x and y A^3 for a square matrix A, raise to third power cos(a) cosine of every element of A sin(a) sine of every element of A x transpose of vector x A transpose of vector A A(2:12,4) the submatrix of A consisting of the second to twelfth rows of the fourth column A(2:12,4:5) the submatrix of A consisting of the second to twelfth rows of the fourth and fifth columns A(2:12,:) the submatrix of A consisting of the second to twelfth rows of all columns A([1:4,6],:) the submatrix of A [ consisting ] of the first to fourth rows and sixth row [A B; C D] creates the matrix A B C D where A, B, C, D are block matrices (blocks must have compatible sizes) rand(12,4) 12 4 matrix with uniform random numbers in [,1) zeros(12,4) 12 4 matrix of zeroes ones(12,4) 12 4 matrix of ones eye(12) 12 12 identity matrix eye(12,4) 12 4 matrix whose first 4 rows are the 4 4 identity linspace(1.2,4.7,1) row vector of 1 equally spaced numbers from 1.2 to 4.7 diag(x) matrix whose diagonal is the entries of x (other elements are zero) diag(x,n) matrix whose diagonal is the entries of x on diagonal n (other elements are zero) sum(x) sum of the elements of x A\b returns the solution x to Ax = b A^(-1) returns the inverse of A rref(a) returns the reduced row echelon form of A det(a) returns the determinant of A norm(a) returns the (operator) norm of A cond(a) returns the condition number of A length(a) returns the larger of the number of rows and number of columns of A norm(x) returns the norm (length) of a vector x vander(x) returns the Vandermonde matrix for the points of x polyval(a,x) returns the values of the polynomial a1x n 1 + a2x n 2 +...an at the points of x [Q R] = qr(a,) returns the matrices Q and R in the QR factorization of A nextpow2(n) calculates the next power of 2 of N fft(f,n) FFT transform of the vector f using N points (pads f with zeros if it has fewer than N elements) polyval(a) returns the coefficients of the characteristic polynomial of A roots(a) returns the solutions to a1x n 1 + a2x n 2 +...an = [V D] = eig(a) returns the matrix V whose columns are normalized eigenvectors of A and the diagonal matrix D of corresponding eigenvalues plot(x,y, bo ) plots the points of y against the points of x using blue dots plot(x,y, r- ) plots the points of y against the points of x using red lines semilogy(x,y, bo ) plots y against x using a logarithmic scale for y axis([-.1 1.1-3 5]) changes the axes of the plot to be from.1 to 1.1 for the x-axis and 3 to 5 for the y-axis hold on puts any new plots on top of the existing plot hold off any new plot commands replace the existing plot (this is the default) plot3(x,y,z, bo ) plots the points of z against the points of x and y using blue dots for k=1:1... end for loop taking k from 1 to 1 and performing the commands... for each