Experimental study on the ultimate strength of R/C curved beam

Similar documents
Rebar bond slip in diagonal tension failure of reinforced concrete beams

Fracture analysis of strain hardening cementitious composites by means of discrete modeling of short fibers

Fracture mechanics of early-age concrete

Crack propagation analysis due to rebar corrosion

Macroscopic probabilistic modeling of concrete cracking: First 3D results

The dynamic fracture energy of concrete. Review of test methods and data comparison.

Double-edge wedge splitting test: preliminary results

Shear resistance of of ultra ultra high high performance fibre-reinforced concrete concrete I-beams

Fracture simulation of fiber reinforced concrete by visco-elasto-plastic suspension element method

Fracture properties of high-strength steel fiber concrete

Measuring crack width and spacing in reinforced concrete members

Behaviors of FRP sheet reinforced concrete to impact and static loading

Crack width control of reinforced concrete one-way slabs utilizing expansive strain-hardening cement-based composites (SHCCs)

Chloride diffusion in the cracked concrete

Engineered cementitious composites with low volume of cementitious materials

Static and fatigue failure simulation of concrete material by discrete analysis

Application of digital image correlation to size effect tests of concrete

An analytical study on the stress-strain relation of PVA-ECC under tensile fatigue

Experimental investigation of compressive concrete elements confined with shape memory Ni-Ti wires

A local bond stress-slip model for reinforcing bars in self-compacting concrete

Fuzzy Logic Model of Fiber Concrete

Bond analysis model of deformed bars to concrete

Toughness indices of fiber reinforced concrete subjected to mode II loading

Determination of fracture parameters of concrete interfaces using DIC

Behavior of concrete members constructed with SHCC/GFRP permanent formwork

Durability performance of UFC sakata-mira footbridge under sea environment

Fracture energy of high performance mortar subjected to high temperature

Detection of cracks in concrete and evaluation of freeze-thaw resistance using contrast X-ray

Fiber reinforced concrete characterization through round panel test - Part II: analytical and numerical study

Blast loading response of ultra high performance concrete and reactive powder concrete slabs

Fiber reinforced concrete characterization through round panel test - part I: experimental study

Cracking analysis of brick masonry arch bridge

Degradation of reinforced concrete structures under atmospheric corrosion

Study of the effect of alkali-silica reaction on properties of concrete by means of conventional test methods and non-destructive test methods

Quantified estimation of rebar corrosion by means of acoustic emission technique

Crack formation and tensile stress-crack opening behavior of fiber reinforced cementitious composites (FRCC)

Effect of short fibres on fracture behaviour of textile reinforced concrete

A generalized discrete strong discontinuity approach

Simulation of tensile performance of fiber reinforced cementitious composite with fracture mechanics model

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

O. Omikrine-Metalssi & V.-D. Le Université Paris-Est, Paris, France

Final Exam : Solutions

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Transfer function and the Laplace transformation

Relating tensile properties with flexural properties in SHCC

Lecture 4: Laplace Transforms

Chapter 12 Introduction To The Laplace Transform

Pre and post-cracking behavior of steel-concrete composite deck subjected to high cycle load

Poisson process Markov process

Experimental study on the flexural behaviour of fibre reinforced concretes strengthened with steel and macro-synthetic fibres

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

Long-Term Deflections of Beams Strengthened by Prestressed and non-prestressed FRP Sheets Hesham Diab, Zhishen Wu, Ehsan Ahmed

Effect of loading condition, specimen geometry, size-effect and softening function on double-k fracture parameters of concrete

Cover cracking in RC columns subjected to reinforcement corrosion under sustained load

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Analysis of balanced double-lap joints with a bi-linear softening adhesive

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 6. PID Control

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

Stress-compatible embedded cohesive crack in CST element

Influence of temperature and composition upon drying of concretes

Relation of roughness parameters and tension softening diagram of concrete-to-concrete interface

3+<6,&6([DP. September 29, SID (last 5 digits): --

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Reliability Analysis of a Bridge and Parallel Series Networks with Critical and Non- Critical Human Errors: A Block Diagram Approach.

Reinforcement work carried out on the Todolella Parish Church after the collapse of a pilaster supporting the classical style dome; Castellon, Spain.

LaPlace Transform in Circuit Analysis

2. The Laplace Transform

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Advanced Queueing Theory. M/G/1 Queueing Systems

Time-depending behavior of PC beams externally plated with prestressed FRP laminates: a mechanical model

Size-scale effects on minimum flexural reinforcement in RC beams: application of the cohesive crack model

Elementary Differential Equations and Boundary Value Problems

Estimation of Metal Recovery Using Exponential Distribution

EXERCISE - 01 CHECK YOUR GRASP

Institute of Actuaries of India

Verification of wet and dry packing methods with experimental data

Chap.3 Laplace Transform

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

1 Finite Automata and Regular Expressions

PFC Predictive Functional Control

( ) ( ) + = ( ) + ( )

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

Microscopic Flow Characteristics Time Headway - Distribution

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

Cork Institute of Technology. Autumn 2006 Building Services Mechanical Paper 1 (Time: 3 Hours)

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

UNSTEADY HEAT TRANSFER

Safety Evaluation of Concrete Structures Based on a Novel Energy Criterion

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

Transcription:

Fraur Mhani Conr and Conr Sruur - High Prforman, Fibr Rinford Conr, Spial Loading and Sruural Appliaion- B. H. Oh, al. (d) 2 Kora Conr Iniu, ISBN 978-89-578-82-2 Exprimnal udy on h ulima rngh R/C urvd bam T. Tamura & H. Muraa Tokuyama Collg Thnology, Syunan, Japan ABSTRACT: Th ulima rngh a urvd R/C bam i invigad xprimnally. A urvd R/C bam i laifid a a aially indrmina ruur aording o h ruural boundary ondiion and i ubjd o a orion momn. Th orion momn gnra diagonal nil rak on h onr urfa, hn h bam i ubjd o a lo orion. An appropria arrangmn rbar i hrfor rommndd undr uh ondiion. Hovr, h ulima orion rngh an R/C mmbr dpnd on a ombinaion vral faor, o a univral hory hould b ablihd for h urvd RC bam. Paramr adopd hr ar h radiu urvaur, axial for, and har pan raio. Thn h influn ho paramr on h fraur bhavior h R/C urvd bam a obrvd. From h xprimnal rul, i a onfirmd ha h radiu urvaur and axial for aff h fraur bhavior h R/C urvd bam. INTRODUCTION In rn yar, h urvd bam ha bn adopd for larg-al onr ruur uh a highay inrhang or a pr-r onr ruur. A urvd bam riv h orion momn in ordr o kp h balan h for in h hol ruur again h prpndiular load, a hon in Figur. During an xrnal for, uh a an arhquak, a urvd ruur i ubjd o a ombind for ha i ompod h axial for, h bnding momn, h har for, and h orion. Whn h urvaur a urvd bam i mall, h ulima rngh may b abl o ihand h influn h orion momn. Tha i, h ulima rngh h mmbr in uh a a i didd in ihr h ulima momn or h ulima har rngh. On h ohr hand, ulima har rngh a rinford onr mmbr go up du o h axial ompriv for. In h a a urvd bam, h influn h axial ompriv for for ulima har rngh i no lar. Th auhor hav udid h ulima rngh a rinford onr mmbr ubjd o h bnding momn, h har for, and h axial for. Th rlaionhip bn ulima har rngh and an axial for h bam a larifid. Morovr, rarh on h urvd bam a don fouing on h urvaur. Figur. Curvd bam. In hi rarh, h fraur propri a rinford onr urvd bam a udid xprimnally a o h influn axial for and har pan dph raio. 2 EXPERIMENTAL PROGRAM 2. Spimn Figur 2 ho h bam. Thr ar hr yp pimn o diu in rm h rlaionhip bn ah faor and h urvaur. Nin pimn r providd. All h pimn for xprimn had h am dimnion. To dformd bar (D3) r plad a h nil rinformn and h ompriv rinformn. Alo, on round bar a arrangd a h nr h ro-ion o inrodu h axial for. Elvn irrup (Φ6) r plad a 5m inrval. Th marial propri boh h main and har rbar ar hon in Tabl. Tabl 2 ho h marial propri h onr.

J D ( h, T h D3 φ8 φ6 2 5 x5=5 5 h rlaiv humidiy h and 8 mpraur T (Bažan & Najjar 972). Th (a) moiur Sraigh bam ma R balan rquir R=4 (b) Curvd bam R 8 R=2 Panazopoulo & Mill 995). I i raonabl o () Curvd bam R2 aum ha h vaporabl ar i a funion Figur rlaiv 2. Cro-ion humidiy, h, a dgr urvd bam. hydraion,, and Tabl = ag-dpndn. Marial propri orpion/dorpion rbar. iohrm (Norling Mjonll 997). Undr hi aumpion and Rbar by ubiuing Equaion ino Equaion 2 on obain Rbar yp D φ 6 Elai modulu E (GPa) 26 97 h Tnil rngh + ( Df u h) (MPa) = & + 529 & + 58 & n (3) h h Yild r σ y (MPa) 383 394 hr Tabl 2. Marial /h i h lop h orpion/dorpion propri onr. iohrm (alo alld moiur apaiy). Th Conr govrning quaion (Equaion 3) mu b ompld by appropria boundary and iniial ondiion. Elai Th modulu rlaion bn E h (GPa) amoun 24.9 vaporabl Compriv ar and rngh rlaiv humidiy f (MPa) i alld 29.6 adorpion Tnil rngh f (MPa) 2.84 iohrm if maurd ih inraing rlaiviy humidiy and dorpion iohrm in h oppoi a. Ngling hir diffrn (Xi al. 994), in 2.2 h folloing, T apparau orpion and produr iohrm ill b ud ih Th rfrn oulin o boh h orpion i hon and dorpion in Figur ondiion. 3, and h By apparau h ay, i if hon h in hyri Figur 4. Th h apparau moiur i ompod iohrm ould an b oil akn prur ino auaor aoun, onrolld o diffrn by an rlaion, lro-hydrauli vaporabl ar rvo v mhanim. rlaiv humidiy, Boh mu upporing b ud poin aording ar o fixd h for ign vrial h variaion and horizonal h dirion rlaiviy and humidiy. roaion Th a hon hap in Figur h 5. orpion In h a iohrm h for mmbr HPC i inflund bing ubjd by many o axial paramr, for, h pially axial omprion ho ha influn i fir xn inrodud and ra ino boh h nd hmial h raion bam via and, a longiudinal in urn, jak drmin and i hld por onan ruur and afr por rahing iz diribuion h xpd (ar-o-mn ompriv r raio, a mn hon hmial in Figur ompoiion, 6. Nx, h SF ranvr onn, load uring ar im providd and mhod, by a ranvr mpraur, auaor mix addiiv, ha an inrodu.). In h h liraur load ino variou o poin formulaion by h loading an b bam. found o Th drib ranvr h orpion load inra iohrm oninuouly normal unil onr h bam (Xi fail al. undr 994). a Hovr, diplamn in h onrolld prn ym. papr h mi-mpirial xprion propod by Norling Mjornll (997) i adopd bau i 4 () Th proporionaliy fiin D(h,T) i alld moiur prmabiliy and i i a nonlinar funion ha h variaion in im h ar ma pr uni 8 volum onr (ar onn ) b qual o h divrgn h moiur flux J 3 3 2 (2) Th ar onn an b xprd a h um h vaporabl ar (apillary ar, ar vapor, and adorbd ar) and h non-vaporabl (hmially bound) ar n (Mill 966, dgr ilia fum raion,, i.. = (h,, ) xpliily During aoun h loading for, h n voluion rak ar hydraion markd raion h fa and SF h bam onn. a ah Thi loading orpion ag. iohrm Dial gaug rad ar plad a h loading poin and h nr h pan o maur h dflion h bam. Thn h bam rain i maurd by ir rain gaug a h nr h nil rinformn and ( h,, ) = G (, ) + h op h bam. ( g ) h (4) 3 EXPERIMENTAL RESULTS ( g ) h K (, ) 3. Ulima rngh () Rul abou h rlaionhip bn har hr h fir rm (gl iohrm) rprn h pan o dph raio and urvaur phyially bound (adorbd) ar and h ond Tabl 3 ho h xprimnal ondiion and rm (apillary iohrm) rprn h apillary rul. Figur 7 ho h rlaionhip bn ulima rngh and h har pan o dph raio ar. Thi xprion i valid only for lo onn SF. Th fiin G (a/d). Whn h har pan rprn h amoun o dph raio a 2.5, in ar pr uni volum hld in h gl por a % all urvaur, h ulima rngh n up almo rlaiv humidiy, and i an b xprd (Norling imilarly. Th raon for hi phnomnon i ha h Mjornll 997) a orion momn h urvd bam bam mall in h a a har pan o dph raio 2.5. G (, ) = k + k (5) Axial For Fix vg vg Load Figur 3. Oulin a urvd bam. Load hr k vg and k vg ar marial paramr. From h maximum amoun ar pr uni volum ha an fill all por (boh apillary por and gl por), on an alula K a on obain K (, ) = 2.2 Tmpraur voluion Figur 4. T apparau and bnding a urvd bam. No ha, a arly ag, in h hmial raion aoiad ih mn hydraion and SF raion ar xohrmi, h mpraur fild i no uniform for non-adiabai ym vn if h nvironmnal mpraur i onan. Ha onduion an b dribd in onr, a la for mpraur no xding C (Bažan & Kaplan 996), by Fourir la, hih rad hr q i h ha flux, T i h abolu Figur mpraur, 5. Supporing and poin. λ i h ha onduiviy; in hi g Fix g.88 +.22 G (6) Th marial paramr k vg and k vg and g an b alibrad by fiing xprimnal daa rlvan o fr (vaporabl) ar onn in onr a variou ag (Di Luzio & Cuai 29b). q = λ T (7) Proding FraMCoS-7, May 23-28, 2

Figur 6. A jak for axial nil omprion. Tabl 3. T ondiion and rul (). Spimn N a/d Pmax Fraur (KN) (KN) mod R-N-32 3.2 2.7 B R-N-32 3.2 26.2 B R2-N-32 3.2 35. BS R-N-25 2.5 63.9 BS R-N-25 2.5 78. BS R2-N-25 2.5 7. BS N: Axial for, a/d: Shar pan dph raio Pmax: Ulima rngh B: Bnding failur, BS: Bnding-har failur Maximum 2 8 6 4 2 8 6 4 2 3.2 2.5 Shar pan dph raio Figur 7. Rlaionhip bn ulima rngh and a/d. R R R2 (2) Rul abou h rlaionhip bn axial omprion and urvaur Tabl 4 ho h xprimnal ondiion and rul. Figur 8 ho h rlaionhip bn ulima rngh and axial ompriv rngh. Whn h axial ompriv for a applid o h raigh lin bam, h ulima rngh n up 5%. Whn h urvaur a mall, an inra 3% h ulima rngh a n. Hovr, hn h urvaur a big, h ulima rngh drad 34%. Tabl 4. T ondiion J = and Drul ( h, T ) (2). h Spimn N a/d Pmax Fraur (KN) Th proporionaliy (KN) mod fiin D(h,T) moiur prmabiliy and i i a nonlina R-N-32 3.2 h rlaiv 2.7 humidiy B h and mpraur R-N-32 & 3.2 Najjar 972). 26.2 Th B moiur ma balan R2-N-32 3.2 35. BS R-N2-32 2 ha 3.2 h variaion 28. in im S h ar ma R-N2-32 2 volum 3.2 65. onr (ar BS onn ) b q R2-N2-32 2 divrgn 3.2. h moiur S flux J N: Axial for, a/d: Shar pan dph raio Pmax: Ulima rngh S: Shar failur Th ar onn an b xprd a 8 h vaporabl ar (apillary a 6 vapor, and adorbd ar) and h non- 4 (hmially bound) ar n (Mil 2 Panazopoulo & Mill 995). R I i ra aum ha h vaporabl ar R i a fu 8 rlaiv humidiy, h, dgr R2hydraion 6 dgr ilia fum raion,, i.. = 4 = ag-dpndn orpion/dorpion 2 (Norling Mjonll 997). Undr hi aum by ubiuing.2 Equaion ino Equai obain Axial r (kn/m2) Figur 8. Rlaionhip bn ulima rngh and axial omprion. h = & + & + h h Maximum From hi phnomnon, hr /h alhough i h h lop axial h ompriv for a iohrm mall, h (alo influn alld moiur h axial apa orpion/ for i ignifian govrning in h a quaion a urvd (Equaion bam. 3) mu b by appropria boundary and iniial ondii 3.2 Load dflion Th rlaionhip bn h amoun ar and rlaiv humidiy i alld Figur 9 ho h iohrm load dflion if maurd rlaionhip ih a inraing h nr all bam. humidiy In h urvd and dorpion bam, ouid iohrm diplamn bom a. largr Ngling han h hir inid diffrn dipla- (Xi al. in h mn. h folloing, orpion iohrm ill b rfrn o boh orpion and dorpion () Eff har By pan-o-dph h ay, raio if h hyri h A a har pan dph iohrm raio ould 3.2, b h akn maximum ino aoun, diplamn bam rlaion, larg in vaporabl h a ar larg v urva- rlaiv humi o ur. Hovr, a b a har ud aording pan dph o raio h ign 2.5, h h varia maximum diplamn rlaiviy bam humidiy. mall in Th h hap a h larg urvaur. iohrm for HPC i inflund by many p pially ho ha influn xn and (2) Eff axial hmial omprion raion and, in urn, drm In a raigh bam, ruur hn h and axial por omprion iz diribuion a (arraio, diplamn hmial bam ompoiion, mall. SF applid, h maximum Wih a mall urvaur uring im bam, and h mhod, maximum mpraur, diplamn a xndd.). In graly. h liraur Hovr, variou ih formulaio a mix larg urvaur bam, found h o drib maximum h diplamn orpion iohrm bam mall ih onr h maximum (Xi load. al. 994). Hovr, in h papr h mi-mpirial xprion pro Norling Mjornll (997) i adopd b Proding FraMCoS-7, May 23-28, 2

J (, () Inid 5 Ouid Th proporionaliy fiin D(h,T) i alld moiur prmabiliy and i i a nonlinar funion h rlaiv humidiy h and mpraur T (Bažan & Najjar 972). Th moiur ma balan rquir ha h variaion in im h ar ma pr uni volum 5 onr (ar onn ) b qual o h divrgn h moiur flux J 2 3 4(2) Dflion (mm) Th ar onn (a) an R-N-32 b xprd a h um h vaporabl ar (apillary ar, ar vapor, and adorbd ar) and h non-vaporabl (hmially bound) ar n (Mill Inid 966, Panazopoulo 5 & Mill 995). I i raonabl Ouid o aum ha h vaporabl ar i a funion rlaiv humidiy, h, dgr hydraion,, and dgr ilia fum raion,, i.. = (h,, ) = ag-dpndn orpion/dorpion iohrm (Norling 5 Mjonll 997). Undr hi aumpion and by ubiuing Equaion ino Equaion 2 on obain 2 3 4 h Dflion (mm) = & + & + & n (3) h h (b) R-N-32 hr /h i h lop h orpion/dorpion iohrm (alo alld moiur apaiy). Inid Th govrning 5 quaion (Equaion 3) mu Ouid b ompld by appropria boundary and iniial ondiion. Th rlaion bn h amoun vaporabl ar and rlaiv humidiy i alld adorpion iohrm if maurd ih inraing rlaiviy humidiy and dorpion iohrm in h oppoi a. Ngling 5 hir diffrn (Xi al. 994), in h folloing, orpion iohrm ill b ud ih rfrn o boh orpion and dorpion ondiion. By h ay, if h hyri 2 3h moiur 4 iohrm ould b akn Dflion ino aoun, (mm) o diffrn rlaion, vaporabl ar v rlaiv humidiy, mu b ud aording o () h R2-N-32 ign h variaion h Figur 9. Rlaionhip bn load and dflion. rlaiviy humidiy. Th hap h orpion iohrm for HPC i inflund by many paramr, 3.3 pially Ulima ho rak ha a influn xn and ra h hmial raion and, in urn, drmin por () Rul abou h rlaion bn har pan o ruur and por iz diribuion (ar-o-mn dph raio and urvaur raio, mn hmial ompoiion, SF onn, Figur ho h fraur a all bam. uring im and mhod, mpraur, mix addiiv, A a har pan dph raio 3.2, h mmbr.). In h liraur variou formulaion an b faild during bnding, xp h mmbr ih h found o drib h orpion iohrm normal larg urvaur. Hovr, a a har pan dph raio onr (Xi al. 994). Hovr, in h prn 2.5, o orion rak influning h orion papr h mi-mpirial xprion propod by momn r obrvd. Norling Mjornll (997) i adopd bau i D h T h xpliily aoun for h voluion hydraion raion and SF onn. Thi orpion Inid iohrm rad 5 Ouid h, 5 ( g ) h K (, ) 2 3 4 Dflion (mm) hr h fir rm (d) (gl R-N-25 iohrm) rprn h phyially bound (adorbd) ar and h ond rm (apillary iohrm) rprn h apillary ar. Thi xprion i valid only for lo onn SF. 5 Th fiin G rprn h amoun ar pr uni volum hld in h gl por a % rlaiv humidiy, and i an b xprd (Norling Mjornll 997) a G (, ) = k + k (5) 5 vg vg Inid hr k Ouid vg and k vg ar marial paramr. From h maximum amoun ar 2pr uni 3volum ha 4 an fill all por (boh apillary Dflion por (mm) and gl por), on an alula K a on obain () R-N-25 (, ) = G (, ) + ( g ) h 5, K ( ) = g.88 +.22 G Inid Ouid Th marial paramr k vg and k vg and g an b alibrad by fiing xprimnal daa rlvan o fr (vaporabl) ar onn in onr a 5 variou ag (Di Luzio & Cuai 29b). 2.2 Tmpraur voluion 2 3 4 No ha, a arly Dflion ag, in (mm) h hmial raion aoiad ih mn hydraion and SF raion (f) R2-N-25 Figur ar xohrmi, 9. Rlaionhip h bn mpraur load and fild dflion. i no uniform for non-adiabai ym vn if h nvironmnal mpraur (2) Rul i abou onan. h rlaionhip Ha onduion bn an axial b omprion dribd in and onr, urvaur la for mpraur no In xding a h C mmbr (Bažan ubjd & Kaplan o axial 996), omprion, Fourir i a la, obrvd hih rad ha h yp R bam and yp by R bam fail during har ih diagonal rak. q = λ T Hovr, hn h mall urvaur R bam a (7) ubjd o h axial omprion, h rak ourrd hr ovr q i a h id ha ara. flux, I a T obrvd i h abolu ha h bam mpraur, finally and faild λ during i h ha omprion onduiviy; a h in onr ompriv hi ara. g (4) (6) Proding FraMCoS-7, May 23-28, 2

5 5 Inid Ouid J D ( h, T h Th proporionaliy fiin D(h,T) moiur prmabiliy and i i a nonlina h rlaiv humidiy h and mpraur & Najjar 972). Th moiur ma balan ha (a) h R-N-32 variaion in im h ar ma volum onr (ar onn ) b q divrgn h moiur flux J 2 3 4 Dflion (mm) 5 (g) R-N2-32 5 Inid Ouid 2 3 4 Dflion (mm) 5 5 (h) R-N2-32 Inid Ouid 2 3 4 Dflion (mm) (i) R2-N2-32 Figur 9. Rlaionhip bn load and dflion. 4 CONCLUSIONS Th fraur propri h rinford onr urvd bam r udid xprimnally a o h influn h axial for and h har pan dph raio. Bad on h rul, h folloing onluion an b dran: Th ar onn an b xprd a h vaporabl ar (b) R-N-32 (apillary a vapor, and adorbd ar) and h non- (hmially bound) ar n (Mil Panazopoulo & Mill 995). I i ra aum ha h vaporabl ar i a fu rlaiv humidiy, h, dgr hydraion dgr ilia fum raion,, i.. = = ag-dpndn orpion/dorpion (Norling Mjonll 997). Undr hi aum by ubiuing Equaion ino Equai () R2-N-32 obain h = h h & + & + hr /h i h lop h orpion/ iohrm (alo alld moiur apa govrning (d) R-N-25 quaion (Equaion 3) mu b by appropria boundary and iniial ondii Th rlaion bn h amoun ar and rlaiv humidiy i alld iohrm if maurd ih inraing humidiy and dorpion iohrm in h a. Ngling hir diffrn (Xi al. h folloing, orpion iohrm ill b rfrn o boh orpion and dorpion By () h R-N-25 ay, if h hyri h iohrm ould b akn ino aoun, o rlaion, vaporabl ar v rlaiv humi b ud aording o h ign h varia rlaiviy humidiy. Th hap h iohrm for HPC i inflund by many p pially ho ha influn xn and hmial raion and, in urn, drm ruur and por iz diribuion (arraio, (f) mn R2-N-25 hmial ompoiion, SF uring im and mhod, mpraur, mix Figur. Fraur a..). In h liraur variou formulaio found o drib h orpion iohrm onr (Xi al. 994). Hovr, in h papr h mi-mpirial xprion pro Norling Mjornll (997) i adopd b Proding FraMCoS-7, May 23-28, 2

J D ( h, T h () Th proporionaliy fiin D(h,T) i alld moiur prmabiliy and i i a nonlinar funion h rlaiv humidiy h and mpraur T (Bažan & Najjar 972). Th moiur ma balan rquir ha h variaion in (g) im R-N2-32 h ar ma pr uni volum onr (ar onn ) b qual o h divrgn h moiur flux J (2) Th ar onn an b xprd a h um h vaporabl ar (apillary ar, ar vapor, and adorbd (h) ar) R-N2-32 and h non-vaporabl (hmially bound) ar n (Mill 966, Panazopoulo & Mill 995). I i raonabl o aum ha h vaporabl ar i a funion rlaiv humidiy, h, dgr hydraion,, and dgr ilia fum raion,, i.. = (h,, ) = ag-dpndn orpion/dorpion iohrm (Norling Mjonll 997). Undr hi aumpion and by ubiuing Equaion ino Equaion 2 on obain (i) R-N2-32 Figur. Fraur a. h = & + & + & n (3) h h () Whn h har pan o dph raio hang, h ra hang h ulima rngh h urvd bam hr i lo /h o i ha h lop h raigh h orpion/dorpion bam. (2) iohrm In a urvd (alo bam alld ih moiur a mall urvaur, apaiy). h Th ulima govrning rngh quaion bom (Equaion larg 3) hn mu axial b ompld omprion by appropria a applid. boundary and iniial ondiion. (3) Th Hovr, rlaion in bn hi xprimnal h amoun udy, vaporabl for h urvd ar and bam rlaiv ih larg humidiy urvaur, i alld h ulima adorpion iohrm if maurd ih inraing rlaiviy humidiy and dorpion iohrm in h oppoi a. Ngling hir diffrn (Xi al. 994), in h folloing, orpion iohrm ill b ud ih rfrn o boh orpion and dorpion ondiion. By h ay, if h hyri h moiur iohrm ould b akn ino aoun, o diffrn rlaion, vaporabl ar v rlaiv humidiy, mu b ud aording o h ign h variaion h rlaiviy humidiy. Th hap h orpion iohrm for HPC i inflund by many paramr, pially ho ha influn xn and ra h hmial raion and, in urn, drmin por ruur and por iz diribuion (ar-o-mn raio, mn hmial ompoiion, SF onn, uring im and mhod, mpraur, mix addiiv,.). In h liraur variou formulaion an b found o drib h orpion iohrm normal onr (Xi al. 994). Hovr, in h prn papr h mi-mpirial xprion propod by Norling Mjornll (997) i adopd bau i xpliily rngh aoun bam for mall h hn voluion axial omprion hydraion a raion applid. and SF onn. Thi orpion iohrm rad I i imporan for rolving dign problm for urvd rinford onr bam ha hr i a lo rlaionhip bn h urvd bam and axial omprion. ( h,, ) = G (, ) + In ordr o rolv h problm, many mor ( g ) h xprimn ar ndd in fuur. In rn yar, (4) rinford onr mmbr hav bn ubjd o orion and analyzd by numrial ( g imulaion. ) h To K (, ) ahiv mor aura analyi, mor xprimnal udi ar nary. hr h fir rm (gl iohrm) rprn h REFERENCES phyially bound (adorbd) ar and h ond rm (apillary iohrm) rprn h apillary Kadonaga, ar. Thi T., xprion Shigmau, T., i Tamura, valid only T., and for Hara, lo T., onn 24. Sudy SF. Th on R/C fiin Mmbr Subjd G rprn o Torion, h Bnding amoun and ar Axial pr Tnion, uni volum Third Inrnaional hld in h Confrn gl por on a Advan % in Sruural Enginring and Mhani, Soul, Kora, rlaiv CDROM. humidiy, and i an b xprd (Norling Tamura, Mjornll T., 997) Shigmau, a T., Hara, T., and Maruyama, K., 995. A Sudy Propod Dign Equaion for h Shar Srngh R/C Bam Subjd o Axial Tnion, Pro. G ( JSCE,, ) = No. k 52/V-28, + k 225-234. (5) vg vg Tamura, T., Shigmau, T., Hara, T., and Nakano, S., 99. Exprimnal Analyi Shar Srngh Rinford hr Conr k vg and Bam k vg Subjd ar marial o Axial paramr. Tnion, Pro. From JCI, h maximum Vol. 2, 53-6. amoun ar pr uni volum ha an Taaka, fill all por T., Shigmau, (boh apillary T., Tamura, por T., and and gl Hara, por), T., 22. on Sudy on har rngh h R/C urvd bam, Th ond inrnaional a on obain an alula K onfrn on advan in ruural nginring and mhani, CDROM. Tukuda, H., Shigmau, T., and Tamura, T., 27. Sudy on g R/C mmbr ubjd o orion and axial.88.22 for, Fourh + G Inrnaional Sruural Enginring and Conruion Confrn, Vol., pp. 327-332. (6) K (, ) = g Th marial paramr k vg and k vg and g an b alibrad by fiing xprimnal daa rlvan o fr (vaporabl) ar onn in onr a variou ag (Di Luzio & Cuai 29b). 2.2 Tmpraur voluion No ha, a arly ag, in h hmial raion aoiad ih mn hydraion and SF raion ar xohrmi, h mpraur fild i no uniform for non-adiabai ym vn if h nvironmnal mpraur i onan. Ha onduion an b dribd in onr, a la for mpraur no xding C (Bažan & Kaplan 996), by Fourir la, hih rad q = λ T (7) hr q i h ha flux, T i h abolu mpraur, and λ i h ha onduiviy; in hi Proding FraMCoS-7, May 23-28, 2