Study on Residual Stresses Redistribution in Welded Joint in Shot peening process

Similar documents
A Numerical Study Comparing The Effect on Residual Stresses of Two Different Types of Projectiles During Shot Peening

Finite Element Analysis of Shot Peening -On the profile of a single dent-

FINITE ELEMENT ANALYSIS OF SHOT PEENING -ON THE FORM OF A SINGLE DENT-

Foreign Object Damage Analysis of Leading Edge of Fan Rotor Blade

THERMO-ELASTO-PLASTIC MODEL FOR SHOT PEENING : A NUMERICAL AND EXPERIMENTAL APPROACH

Burst pressure estimation of reworked nozzle weld on spherical domes

Modified Symmetry Cell Approach for Simulation of Surface Enhancement Over Large Scale Structures

Modelling of the Ultrasonic Shot Peening Process. C. Pilé, M. François, D. Retraint, E. Rouhaud and J. Lu

Moment redistribution of continuous composite I-girders with high strength steel

New Life in Fatigue KIVI NIRIA HOUSTON, WE HAVE A PROBLEM...

SIMPLIFIED MODELING OF THIN-WALLED TUBES WITH OCTAGONAL CROSS SECTION AXIAL CRUSHING. Authors and Correspondance: Abstract:

Experimental and numerical analysis of impact on steel curved panels

On The Temperature and Residual Stress Field During Grinding

Structural Analysis I Chapter 4 - Torsion TORSION

Volume 2 Fatigue Theory Reference Manual

Ultrasonic Non-destructive Testing and in Situ Regulation of Residual Stress

Nonlinear Analysis of Reinforced Concrete Shells Subjected to Impact Loads

A Study in the Prediction of Residual Stresses in Shot Peening


Investigation on Fatigue Strength of Aluminum Alloy 6061-T6 Resistance Spot Welded Going under Tensile-Shear test

Lateral Crushing of Square and Rectangular Metallic Tubes under Different Quasi-Static Conditions

Kuo-Long LEE, Wen-Fung PAN and Chien-Min HSU

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives

Modeling of welded angle connections in fire

Stress-Strain Behavior

numerical implementation and application for life prediction of rocket combustors Tel: +49 (0)

An alternative design method for the double-layer combined die using autofrettage theory

Modeling of Bond of Sand-coated Deformed Glass Fibre-reinforced Polymer Rebars in Concrete

Rebound Property in Low Velocity Impact of Two Equivalent Balls

Compressive Residual Stress Optimization in Laser Peening of a Curved Geometry

Appendix K Design Examples

Mode II stress intensity factors determination using FE analysis

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

Extraction of Cohesive Properties of Elasto-Plastic material using Inverse Analysis

Modeling of Aluminum Foams for Impact Absorption in Multilayer Structures

[5] Stress and Strain

Drilling in tempered glass modelling and experiments

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

ScienceDirect. Bauschinger effect during unloading of cold-rolled copper alloy sheet and its influence on springback deformation after U-bending

AN EXAMINATION OF THE RELEVANCE OF CO-INDENTATION STUDIES TO INCOMPLETE COVERAGE IN SHOT-PEENING USING THE FINITE-ELEMENT METHOD

EQUIVALENT FRACTURE ENERGY CONCEPT FOR DYNAMIC RESPONSE ANALYSIS OF PROTOTYPE RC GIRDERS

Specimen Geometry and Material Property Uncertainty Model for Probabilistic Fatigue Life Predictions

STRESS ANALYSIS AND STRENGTH EVALUATION OF SCARF ADHESIVE JOINTS SUBJECTED TO STATIC TENSILE LOADINGS. Graduate School of Mechanical Engineering

Fatigue life estimation under multi-axial random loading in light poles

3D-FE Implementation of Evolutionary Cyclic Plasticity Model for Fully Mechanistic (non S-N curve) Fatigue Life Evaluation

Thermal load-induced notch stress intensity factors derived from averaged strain energy density

Pillar strength estimates for foliated and inclined pillars in schistose material

A Review On Methodology Of Material Characterization And Finite Element Modelling Of Rubber-Like Materials

FEA A Guide to Good Practice. What to expect when you re expecting FEA A guide to good practice

CFRP. FRP FRP. Abaqus

Frontiers of Fracture Mechanics. Adhesion and Interfacial Fracture Contact Damage

12/25/ :27 PM. Chapter 14. Spur and Helical Gears. Mohammad Suliman Abuhaiba, Ph.D., PE

IMECE CRACK TUNNELING: EFFECT OF STRESS CONSTRAINT

A FAILURE CRITERION FOR POLYMERS AND SOFT BIOLOGICAL MATERIALS

Finite-Element Analysis of Stress Concentration in ASTM D 638 Tension Specimens

University of Sheffield The development of finite elements for 3D structural analysis in fire

HERCULES-2 Project. Deliverable: D4.4. TMF model for new cylinder head. <Final> 28 February March 2018

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns

Linear Elastic Fracture Mechanics

Structural Analysis of Large Caliber Hybrid Ceramic/Steel Gun Barrels

Influence of the filament winding process variables on the mechanical behavior of a composite pressure vessel

Measurement of acousto-elastic effect by using surface acoustic wave

MECHANICS OF MATERIALS Sample Problem 4.2

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS

An Evaluation of Simplified Methods to Compute the Mechanical Steady State

STRESS ANALYSIS AND STRENGTH EVALUATION OF SCARF ADHESIVE JOINTS WITH DISSIMILAR ADHERENDS SUBJECTED TO STATIC BENDING MOMENTS

Part :Fill the following blanks (20 points)

Finite Element Simulation of Shot Peen Forming

Residual stress in geometric features subjected to laser shock. peening

Reliability implications of advanced analysis in design of steel frames

FINITE ELEMENT COUPLED THERMO-MECHANICAL ANALYSIS OF THERMAL STRATIFICATION OF A NPP STEAM GENERATOR INJECTION NOZZLE

Case Study: Residual Stress Measurement

Optimization of Johnson-Cook Constitutive Model for Lead-free Solder Using Genetic Algorithm and Finite Element Simulations

Impact-resistant behavior of shear-failure-type RC beams under falling-weight impact loading

Sensitivity analysis on the fatigue life of solid state drive solder joints by the finite element method and Monte Carlo simulation

The reaction whose rate constant we are to find is the forward reaction in the following equilibrium. NH + 4 (aq) + OH (aq) K b.

Nonlinear FE Analysis of Reinforced Concrete Structures Using a Tresca-Type Yield Surface

EXPERIMENTAL DETERMINATION OF MATERIAL PARAMETERS USING STABILIZED CYCLE TESTS TO PREDICT THERMAL RATCHETTING

INFLUENCE OF THE LOCATION AND CRACK ANGLE ON THE MAGNITUDE OF STRESS INTENSITY FACTORS MODE I AND II UNDER UNIAXIAL TENSION STRESSES

Effect of Mandrel, Its Clearance and Pressure Die on Tube Bending Process via Rotary Draw Bending Method

FINITE ELEMENT ANALYSIS OF IMPACT AND PENETRATION OF POLYCARBONATE PLATE BY A RIGID SPHERICAL PROJECTILE

Enhancement of Spot Weld Modeling using MAT 100 DAI

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP

Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration

A new computational method for threaded connection stiffness

RESIDUAL STRESS MEASUREMENT IN STEEL BEAMS USING THE INCREMENTAL SLITTING TECHNIQUE

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

Strain and Stress Analysis by Neutron Diffraction

A Simplified Eigenstrain Approach for Determination of Sub-surface Triaxial Residual Stress in Welds

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

Análisis Computacional del Comportamiento de Falla de Hormigón Reforzado con Fibras Metálicas

Probabilistic design of helical coil spring for Translational invariance by using Finite Element Method

Low-Cycle Fatigue Crack Growth in Ti-6242 at Elevated Temperature Rebecka Brommesson 1,a, Magnus Hörnqvist,2,b, and Magnus Ekh 3,c

THE EFFECT OF GEOMETRY ON FATIGUE LIFE FOR BELLOWS

A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts

Optimization of Radial Force in Turning Process Using Taguchi s Approach

Modeling of Thermo-Mechanical Stresses in Twin-Roll Casting of Aluminum Alloys

A STUDY ON FATIGUE CRACK GROWTH IN CONCRETE IN THE PRE-PARIS REGION

FE Modeling of H-SECTION Connecting Rod

Transcription:

192-185!" 1395 37 :1; & &5 * - 12)3*. /0( )* +,-) &' 8% ))9 '!"!" #$ %& $ %!"!" #$ %& $ ' %'!"!" #$ %& $ ' %' * & 1-8- 9 :*3, ; 75 -' 1 230 " ', -./ ' * +( ) #( * -8@A & B% 23? " 9@% 2$* 1 0! ' 1>% *. ' 2', 23"% 1; 0<* 1 230 +< D" * 23 7 2; % EF 2).' $$ 1 0 2 ', -./ :1, " 8C 0 1 2 ' 1>% * 2; 2"%'.% * + A, 1 0 2 8@A G 2 ' 1>% * L.% ' % '! 9@% 1 230 I J?, )@ ' 1>% -:1; K1; 2"%' # 0H 1.% '!% ; <0! 2 + " L O% 1(% & :A 8 2303M L ) N; 1A 3 " S T< $$ 1 230 2 8@A P@% 2$* 23 0! $$ 1 0 03 # 03M Q " RCF L 2$* 1 0 $ 0<* % L UJ QV13.' 8@A 0 & F * 23 75 ' 1>%.' W 1>% @A ; % 0<*.', K/ ' 1>% 2"%'! D" 1 0:/8 <8 Study on Residual Stresses Redistribution in Welded Joint in Shot peening process R. Moharrami R. Sourki p. Azadian Mechanical Engineering, University of Zanjan, Zanjan, Iran Mechanical Engineering, University of Zanjan, Zanjan, Iran Mechanical Engineering, University of Zanjan, Zanjan, Iran Abstract Investigations illustrate that fatigue behavior, corrosion resistance and failure behavior are one of the most common results affected by residual stresses. The shot peening process which causes compressive residual stress (CRS), is one of the ways to improve the performance of industrial components, especially weld joints with tensile residual stress. In the present paper, numerical analysis of parameters of shot peening process on residual stress distribution is employed on pre-stressed specimen. On one hand, the numerical simulation of this process is investigated. On the other hand, the surface CRS and the effective parameters of this process, by simulating it on the welded specimen, are investigated on and around the welding region. In each section, numerical results were verified not only with former numerical investigations but also with building a proper empirical specimen and measuring the stresses experimentally. Results illustrate the decrease of tensile residual stress or increase of CRS on the surface of the pre-stressed specimen after shot peening process. Moreover, it shows that parameters of the shot peening process have a significant impact on final stresses in the specimen. Besides, based on the results the maximum CRS goes up by increasing the diameter and velocity of the shot. Keywords: Residual stress, Redistribution, Simulation, Shot peening, weld joint. OA8 -N$ T< 1 230! :_ "3.% A $ RF ', 2&3"% ` @ 8% -))9 " [E 13 R M N$ Q> " K1F 03 &, 3C T< $$ 1 230 ' 2', 23"%.% b! KF, ]: 0 F a.18 QV13 9@% $$ 1 23 0 D" @ Q " % 23 * " B% 2$* 9@% 23 0!.' ))9 Q> 23 I3 23? " 9@% 2$* 1 0! ' 1>% * 1 0 2 8C -8@A & B% G> 2 -c d " * Q.' 9@% $$ >-1 9 23 "% #>X 1J 0<* 23? % " Y '! RZ 3 O% " " 2 +:, 2+ ))9 < "% G ))9 AN; -;E " ( ' W - % 1:; -))9.' * 3 $ ' 2" -( "! 3 "% " "% 28 2 ' * +( ) #(.' 1 23 0 " 7 -C/( Q 1; Y '!! 9@% $$ 1 230 0 #3 * Q " K1F. + " ' & $$ [ ",( 2+ " ' 230 9@% 1 2', 2\ " 8% ]^ :;.' $ ' * r_moharami@znu.ac.ir :

(.' B% I3 28@A (! 2 H% h #* *! I3 P@%. ; % H% -c 8@A P@% I J G%. )@ R) 7 G%N R' 7 R9 1R'., 2$* 9@% 1 23 0.3 $ ( " S 230 2F JD" ( 230! D" %... ', K/ 1,3 @' *3 AA8 B /A5. /0( ) +,-) -1? *-C&' [1]EF.C F5 &' G. /0( ) +,-) &D3-2? 2 K 75 % []( 2) 13 3 K dh! & L ( 1% <. + * Q 2"%' 2 O% ; 1% 3 75 % 2; 2"%' [5] 13 2'! L G<! ( 1 230 b&> G ( % []9 QV13.* % W)% r $ ( 1>% Q> ( SX% 1>% 1 230 D" 1& 0) @( ^ H% 0 % 9 1 2"%' [7] 2) ". B j:h @C O E % ( #( 1; " 1>% 75 2) QV13.( 2) t3.[8]% 1 % AISI 30 < t".* 1>% 23 W % 2 2; 2"%'.[9]' + 75 % L * Q */ +M * + DA * 7 2 *? & L P@% 1% KF 31>% 0 ]3 R' 03M Q>!. $ P@% " $+ 231>% 2) ' - 7 ' 1>% * 8@ " $ b! 1>% Q> ( * 28 % 2"%' 3( - Z ; % -' 1 0 D" % 1 0 D" ( ; % 0<*.' 7 0<* % L UJ.$H & C( @) QV13.3 03 $ 1 0 % Q1 ; %.[10] 1 0 1 2 &, RA 75 ( ; % */ D" 9 1 28 % K G 2) ` " ' 1>% " RCF 1 230 D" +< 230 " 75 P@% U1; > 3.' 75 * 23 +< % ' 7! ' ] 1 "% :1; 2' 75 2$* 1 230 D" 23D" +< 2$* 1 2&$ 7 2 R'.' 3( 1 ) % 1 G #( 1; j:h 0 2 1' 1 " R'.% ` 9@% 2$* $$ 23 0 2 # 231 1 23 $$ 2$* 230 7 " -B R',.' 230 2 231 #( * 9 -B <.3 $ j:h 2$* 1 23 h - 7 U1; Y * & K k % 1 75 ' 1>% * 28 1>% 2" 1>% ; % k 3. + A 0' -' 8@A 1>% Q Y@C 8@A 1>% H%.3' 1>% * ]& 23 " 3 1 230 2 2" -))9 ( K%.% * + -C 3"% * 3 0 # 7 QV13 1A 230 D" '1>% * G<* % QV13 1 230 7 < 30 D" * 23 7 2.% ))9, -8@A * 9@% ( 9 @A ; % 1 K [2]2) 13 <' KZ 7 % A % 1>% 19 0 2 +"! L ( L ( 1>% [8' % [3] 13 #. ) X 2 28' 9@% - 7 1>% H% R' [8' ; %.( 1 230 18

" b % E 9 K% I3 1A Q 1 ;.% ' K1; 03M 2"% K 2 ' * P9C 2"%' 21 8% :A @( ^ *. b9%.* * *! -;NJ "1% - 2 K UJ H% b! 2"%'.% ' B% [10] D, ' ` % U@ L Q 2) * 23 ' 32" " ' 3@( > 3. kfn 03M Q 2 23<*b " B% 32" 8{ U@ b; % 13 V.' :1,, " -B G%N-G%. O% *! L F KA RA L.' 1>% ( QF ' 1>% * I3 28@A QV13.% ' * + k 1 K, U@ ' K1;! L ) 03M Q * 7 ) + K1; % @( -8% G " B%, " % L # b; [E " QV13.% RA -B b; j:h K > L % 3 1 D".% ' RCF 1J L kfn L ) " 0H Q L 9C? % 01 k 2; R:9 & 303M ' ` L EF " G.% + B% % ' b!! 2 + " D, ' 5! 2+9C k EF 2) L.% ' $3R' ' ) [5] G 2) ].[11]? + 31>% +> " " 1>% 1 0 < 2 9@% 2 + Q# 28 % ) 9 1 K " B% +> ( R9 " 2 O%? G ( R') G%N 231>% G< * % " 1>% 9@% 230 2 +.[12]'S 8' " B% 02 + " " RCF L! ::9 % G " $H U)9 Q " :C I3.' #( +( * % * 7 2 D, 1 230 D" +< " 1>% -:1; 75 8@ :A 1 230 2 ' 2', 21 9@% ba 9 1 G " B% k Q.' D" 3 " ( 7 % "1>% * 2"%'.% ' :A 0 1 2 1 230 +< % L 2"%'? 9C % 2 1A Q.% ' ),! 2; 2303M 23? " B% '?<+ Q 2 0H # 1A 1>% * " RCF 230 RA 0H ' 5 2"%' " ( 7 ' % 1 0 2 1 2 " K/ 9@% 1 230 D" * Q 23 3#$" 1 (% 0H Q.% ' 8@ ', 2 + 1*3 ' 1>% * b! ' 2', 9@% 1 0 2 +" S 8'?!?.% ' % 03M Q L 9C 0/5N@ B D&' &F 50 LJ& ' /3/3&' KF &F Present Results Results From [5] -3? 3 2 1 8 ( 2"%' # -B 23< ) ]3 L b! 0 K 2 1>% 25 9 5 ' &$?, 0 D" L } H% &,. + 2% j:h ~@% 0 2 +Q# " [5] D, $ L %.' B% ( &, 1; 239 % &$ ) 3 0 ) R 3 2303M L 9 1 L ) 2"% K 3.% ' 5 ' b! 23R:9 O% A ' $ &5 /*J? )-2 J 1 230! 9 % 2 0H Q D" +< * 23 75 "1>% * G1 0 1 2 * 2, 2"%' ".% ' B% ANSYS LS-DYNA 9 1 R:9 <*b h G 9 1 K G %3 2" 2 1>% ( 7 % &, & 3 1 D" 8 x)* :_ ) R 2"%' Q.% * + A B% &,.% ' * + k 2"%K 1>% 8@A b&> G 8 HE R' " "1>% -:1; L 2 75 b; 7 " RAF % 8@A U1; 8 8@A 2 ' B%.% ' * + k 1>% [8' k 23< 2 2 + $3 1 " 0 2 ( 2)@ @& ]k 0! A 0<* O E ], ( 2.% * + A k ' 2 < x ' &, ' B% [3] D, " * + 0/25 Y@C 21; &, " " )* &, I J " 8@A 2" * + k O:C 1>% 2"%' Q.% ' 2+A Q j:h 23 0H.% ' ) )* &, ' j:h * 28 2 ' 1>% 7 03M -;NJ O% * 1A 3.% * + A % Q! 23 ' (% 231 < %! 187

) * -C&' B / 2+ H " S " B% - &5 /, 0 ]: (Mpa) 1500 1-1-3 (% 23 * O:^ b! Q F 1 0, 8@A 2 ', 2 ' 2#3 ]& -N $ " [ E Q A 8@A. ' ',K/ Q 2 23 "% 2 N A 2 ', 1, 2" % K < 03 M Q ) 3 " +?N 'b! ' 0 " ' U @ % ' `! 23 8* 0H 8A :_ ) R < " 03 2 2" % ' Q. ' )@ 2 & 1. % ' 2" 2 ', 23 " "?, W 2& 1 0/00025 " 1> % ( ^ R R :9 2 O% 2 3 1 " 0/002 % 3K 5R '. % ' B% F]). % $ 0H Q B% '! 23 1 >G *3- k ' * -C&' /3&' / RA F5 /, K G %N (Gpa) 100 1 * *!F 3 * - / 0 *3* -1 1B r 2 K O E 0 0 P C 3/3 2 105 % j: H. % *+ ' 0/75! D" ( 8 2 30 Q 8 - /H$ 1> % L 1> % 9 ( K F 2 8 % 2 1 1 R ' % 3 $ %. 3 $ RC F 0 D " P@% UJ " ( P@% R ' X13 b ; - C - C L U J. * 3 ( 8% $$ 1 2 30 1> % 25 " ' 2 30 + < D " R + '. ' 1> % G ( R9 1> % G ( 2 30 1 'K... ', K / A 0 1-5? S* -C&',3 @' ( ) +,-) B / @' :_ RF?, RF F RF :F % < :F % * +b! 1 1> % G ( ( '?, 2" % ' W x ' 2 ', * - <, 13 - ;NJ ' *. ' 13 D, U @ * + K 2" $ ', 1 2 30 D " + < 2" % ' L 2 30 ( 8E - F K 1; ) 2 ', 3 @% 3 R '. %,?, F $$ T < 1 $ 2" % ' " % ', 1 2 30 D "?, UJ $$ 1 2 30 R ' U J. % '. % 8% 8@A x% -! ))9 x% ' b! 2 32" % ' <! 23 % ', -. / O:^ % 3 $ ) B < J 1 2 30 + < 3 * K J2 3K/ 9 E;0 + < ] : 0 C 0-95 F. [1 ] ' ' 2 ', 8@A ] : 0 C 25-10 2 )@ 1> % G ( 2" % ' & 0H 1 AQ. % *+ A, ', 1 2 30 *B : P3 1 -? 0 ( 2" % ' + V R % L, :_ 2" % % ' 2 ', K / G 1> % Q > 1 0 2 P@% 2 1> % G ( 2" % '. % 'K ( ) /3 3* @GQ * ( ) * +,-) &' -3 PB3. $ " >% * ' $ 2 303 M 8 @ * Q % '+ 2 303 M O:^ % 2 3 ~ @% 2 7 % [E 0 ~ @% 2 2 ', RZ : A ( % 2 3 *" :A0 2 " B % 0H Q. % $ % '! 2 G :^ 2 ', * 2" % ' R A 2 3 0H L?, x( 1 23 0 2 )@ 1> % G ( " RC F 2 30 D " " ', 1 2 30, 7 230 2 8@A # 1 A ' % ' 1> % 188

" b % E 9 K% 1 K 2,( 0 -C ', 1 230 0 K1; &, 0 0 K1;.% ' * + k 9 2, h! " 9 1 K ~@% 2 $$ ' B% K 2 ~@% DA 23 + : 2 7 2', 1 230 1; 230 ).% < 0H Q.' ' Q8 1 2! 2 +" (% 2 k $ @( ^ -C * " * 2"%K.% ' dh! 231 20 " L R) " ' B% :A 0H -! 7 :A ' PE? U@ % ' RCF 1J 1 230! D" * 23 " (.% * + A % % -! :A 0H B% ( ) Q 0H 2"%' L.[13]% ' B% d:@ 1 0 D" "! 3 $ B% B T< 2$* 230 ' $$ 230 h! 1 W ' b! 2"%',.' 1 23K % b". $ % 2 ' ' (% ' 1>% ' 8% -B 230 D" 9. + A LJ& <3&V) &D3 &'-3-3 2/5mm 7 @A O:C 1>% ; % - h 7 %.% 1 ( % ' K1;$$ 0 28@A 55 0 25 ( ; % 0' Q* + k % % % * + -C 1>% 2 7 100 85 70 0/7 8@A 0 0 K1; F 2 ' 1>% Q.% * -C 8@A ]: 0 0/9 ( R9 " a)a 2 * Q 2 RCF L " RCF L 9 8 2&:' 1 2.' * 1>% ]: 0 0/9 0/7 K8 0 0 F * Q :* L Q.' 3$ ' 8@A 85 ; % 2$* 1 0 +< ; % 0<* ( 0<* 7 Q " 75 a' ' K1; 9@% $$ 0 03 (d ' 3( % ]: 0 0/7 K8 0 0 F (} 0 2$ 1/8 0<* L ; % 0<* ' 2$* 1 ]: 0 0/9 K8 0 0 K1; F ( 0 2$ 1/8F 0<* L ; % 0<* + 2$* 1 9@% 0 0<* ; 8@A $$ 0 ) 0<* ( 2" ) 03 A ' 1>% b! +.' J 23 0 D" 9&J /0 ( ) +,-) /-,3 U 9&J BP-T. /0( ) +,-)-?, b#3 ( 1>% ' 2', K 7 R'.3 $ 8@A " ' *-C&' ;E 0 ' - * -. /0( ) +,-)-7? *- - * -. /0( ) /,1-2-3 &' 2; < +V " 2 +:, &, 03M " 1A Q 7 1>% ( 2', * 2"%' 2, 189

K1; F 1>% [8' ' 2/5 Q N; (d 0 2$ ) ]: 0 0/7 K8 $$ 0 % * 0<* 1/2" 0 2$* 1 0 0 K1; F 1>% [8' ' 2/5 (} 2$* 1 0 2$ ) ]: 0 0/9K8 % ' 0<* 1/5F 0 2$ 8 1/25mm " 1>% [8' 0<* ( $$ 1 0 < * 03 9@% 2$* 1.% 03 8@A U1; '! Before Shot v=25m/s v=0m/s v=55m/s v=70m/s v=85m/s v=100m/s... ', K/ 1 230! D" % Before Shot r=0.5mm r=0.7mm r=1.25mm r=1.5mm r=2mm /@GQ/B&' LJ& <3&V) &D3,3?"W KF-8? X.) ( )&'3&' 0/7' ) /,33 <3&V) &D3 &'--3 7 ; % :C 21>% ( 2"%' " % Q B% % ' K1; $$ 0 28@A 70m/s b! 23 R:9 ' ( 23 1>% [8' % ' /@GQ/B&' N@ <3&V) &D3,3?"W KF-10? X.) ( ) &'3&'0/7' ) @A 3 2".' 1: 2 1/5 1/25 0/7 0/5 ' 0/7 0 0 K1; F ' 1>% 1>%.% * + A % 8@A ]: 0 0/9 ' K 1 S Before Shot r=0.5mm r=0.7mm r=1.25mm r=1.5mm r=2mm Before Shot v=25m/s v=0m/s v=55m/s v=70m/s v=85m/s v=100m/s /@GQ/B&' N@ <3&V) &D3,3?"W KF-11? X.) ( ) &'3&'0/9' ) /@GQ/B&' LJ& <3&V) &D3,3?"W KF-9? X.) ( ) &'3&'0/9' ) /*J KF L " &' B '&) LP@5- ' `' 1>% 2"%' " RCF L 5 k 1>% & ', 1 0 2 1 RA 0H 1: HE 8@A G k Q.* + A '! 2 & A30.* S, " 1: 00 250 8 :* " B% t? 1 230 23 : 2', b#3.* + A 2', -:1; :A 0H 2; 2"%' 0H B% 2 2', 1 0 +< D" 29 ' 1>% " RCF L 8@A ]: 0 0/9 0/7 K8 $ 0 2$* # L Q.% ' 01 11 10 2&:' ' : 3 Q 0 2$ ) 1/25mm 1>% [8' 0<* ( I3 28@A U1; cb QV13 * 0<* 2$* 1 ' $.[13] + 7 ' PE 190

" b % E 9 K% XRD EF* \-). ( )/&],33 KF-21B 2% ' 2 +" 0 ) (K% # )?, x( 1; -7/5 202-220/5-23 x( " :C* ( 1:)?, 5 10-10 -5 7 2F ]: 0 30 K j b! 0$ L UJ. D* 03M Q S, -B ' B% S, ' H$ B% 2 ' MPa K8 1: 0! 8* " ', 1 (% 0H 0 1 230 2"% 8 Q.215 " 8& ' H$! 8* I3 28@A ]: 0/9 K8 $ 2 1: 10 2:C* 2', -:1; % ".% '! P@% 8@A ]: 0 AISI 30 2 ]: 0 0/9 K8 $ 2; K1; 3 1 " 28 1>% " % 8@A ) R9.'! 8@A $$ 0 % ' 1 2 3 #% R( Q1 1 G " 1>% #% % 2 % %100 +' 2 " " < ' A B% 23 1>% 1 #% Q 2 " Q Q.[1] + 21; K" " )A15 F ' 1>% 2 )A 20 " $ 1J 2 03M '. + dh 3 1 d:@ -' % " # 1 2.* G x% ' 2', 1 " 1 23 K * + A ' 1>% * 8 8@A 8@A " -:1; P@% %100 'X13 ' 1>% * ' I J G ' 2', 1 12 R'.1!.3 $ Q1 1 13 ' @GQ /B&' /&],33 /0? (-1? ' 1>% * " 8 3 $! L 0 1/025B K8 21 0 2 1: 10 2:C*.% '! 8@A P@% ]: 1 P@% " 1>% * 2"%' 2; % 2 % Q.% ' B% 2 0H -! " ' (% B% 231>% 2" " 2 +Q# B% 1>% @A K1; 2 2/5mm ; 11 R' U@! 0H '.' * + k 70 m/s) ( #3 1>% ; % * " ' * <> Y@C O E ' b! 2; R:9 a)a 30 % > % ' B% %100 +'! 2; 2"%' L. + -C 1>% ( R9 " 10 7 :C* 2 @) 2! 2 + " L < * ) L <.% ' ` 3 K,?, x( " 1:? 1; RA # 1 230 2; R:9! 2 5 & ' ' b! 0H Q R:9.' * 2;? 9C ZP L.) - 3&0 ', YG-12? Q 8%! 1 2', 2, F J ]3 * k 2+ A %3 ) BF 1>% " RA 1 230 D"?, x( I J Q ) 21 13 R'. +!?, x( ) -C ' 231>% ) 8 R' 13 ' " 1>% P@% G<.3 $ U)9 Q B% [13] '&) ([' * *!F3 *-/0/--13? $ 23 8A 1 (% * R1 " 8 b! 1 230! + " >?, x( I J RC* XRD #% x% 1 230 0H Q.* + 2 +" 1 R' U@?, x( I J 2 8.% '?<+ 2 K, L ' 191

B +( ( * $$ 1 23 0 2, ' ' 1>% 8@A UJ ( k -Y RZ 3 [ ' R9 UJ Q 8 x'.' $ +( % O:@ Q B 1 03M Q 2! $$ 9@% 1 230 2 ~@% 2 ' 1>% h! B < 2', RCF ~@% RZ T< -8@A 1; 0<* 8@A 9@% 0 2$* * $$ *. + +3&- [1] Handbook of Residual Stress and Deformation of Steel, ASM International, ISBN: 0-87170-729-2, 2002. [2] Schwarzer J., Schulze V., Vöhringer O., Finite Element Simulation of Shot Peening A Method to Evaluate the Influence of Peening Parameters on Surface Characteristics, Proceedings from International Conference of shot peening (ICSP-8), pp. 508-515, 2002. [3] Meguid S.A., Shagal G., Stranart J.C., Daly J., Threedimensional dynamic finite element analysis of shot-peening induced residual stresses, J. of F.E. in Analysis and design, Vol. 31, pp. 179-191, 1999. [] Rouhaud E., Oakka A., Ould C., Chaboche J., Francois M., Finite Elements Model of Shot Peening Effects of Constitutive Laws of the Material, Proceedings ICSP-9, pp. 107-112, 2005. [5] Shivpuri R., Cheng X., Mao Y., Elasto-plastic pseudo-dynamic numerical model for the design of shot peening process parameters, Materials and Design,Vol. 30, pp. 3112 3120,2009. [] Al-Hassani, Numerical Simulation of Multiple Shot Impact, Proceedings ICSP-7, pp. 217-227, 1999. [7] Zion H., Lewis, A Dynamic Finite Element Simulation of the Shot-Peening Process, [Ph.D. Thesis], USA, Georgia Institute of Technology, 2003. [8] Torres M.A.S., Voorwald H.J.C., An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 30 steel, Int. J. of Fatigue, Vol. 2, pp. 877-88, 2002. [9] Hong T., Ooi J.Y., Shaw B., A numerical simulation to relate the shot peening process parameters to the induced residual stresses, Engineering Failure Analysis, Vol. 15, pp. 1097-1110, Paris, France, 2008. [10] Majzoobi G.H., Azizi R., Alavinia A., A three-dimensional simulation of shot peening process using multiple shot impacts, J. Material Process and Technology, pp. 1-15:122-3, 2005. [11] Miao H.Y., Larose S., Perron C., Levesque M., On the potential applications of a 3D random finite element model for the simulation of shot peening, Advances in Engineering software 0, pp. 1023-1038, 2009. [12] Kim T., J.H Lee J.H, Lee H., Cheong S.K., An area-average approach to peening residual stress under multi impacts using a three dimensional symmetry-cell finite element model with plastic shots, Material and Design, Vol. 31, pp. 50-59, 2010. [13] Azadiyan P., Experimental and numerical analysis of distribution of residual stresses caused by shot peening process on a welded specimen, M.Sc. Thesis, Department of Mechanical Engineering, University of Zanjan, Zanjan, 2011. (In Persian) [1] Guagliano M., Relating Almen intensity to residual stresses induced by shot peening: a numerical approach, J. Materials Processing Technology, Vol. 110, Issue 3, pp. 277 28, 2001. *-C&',3 U B?RQ'&) KFB^> ) Z3KF-3 1B ( " S 1>% -1/025-1/027 (*) ( " 0 1>% 0/9 (**) 0/9 L! L EF 2) 2; L (*).' 8 ]: 0 K, 1 230 (**). + 8@A % 1: 0 ) K8 0 K1; " ' 1 230 15 R' QV13 $ 1>% ( " ' 1 230 SX% $$ 0 1/027 B K8 $ 1>% ( " 8.% ' 0 ' kfn.% '! P@% 2 8@A ]:.% * 03 &, RA J 9@% $$ 1 *-C&',3 @' B?RQ./0( ),3?"W KF-15? (A8 L ) /@GQ /B &' /&]F-5! D" ' >% * 2"%' EF 2) 2 1 2 " 1>% * " '! 1 230.% ' % A RA A 1 0 ' 1>% * 23 2<% 75 # L % 2$* 1 0 R $$ 0 ) 03 8@A ]: 0 " R +' 0 +< 2 L " #13.' 500 300 )1; 0 28@A 2 1>% ( 2"%' ; % 0<* " 75 2$* 1 0 7 U1; +< 0<* - +< 231>% " B% QV13.% 1>% [8' 2$* 1 230 +< *!.J ' 1>% ".' 3( 9@% 1>% -:1; b! %! 2; L UJ * 9@% 2$* 1 230! R O% '.* 3( & ', -./ Y ' #( +( * 23 O% dh A b; -C QV13 UJ! K1F C 100 " 1 +' ' 1>%... ', K/ 1 230! D" % 192