QN THE CONVERGENCE ANALYSIS OF THE NONLINEAR ABS METHODS. 1. Introduction

Similar documents
ON ALGORITHMS INVARIANT T 0 NONLINEAR SCALING WITH INEXACT SEARCHES

Storm Open Library 3.0

POSITIVE FIXED POINTS AND EIGENVECTORS OF NONCOMPACT DECRESING OPERATORS WITH APPLICATIONS TO NONLINEAR INTEGRAL EQUATIONS** 1.

ITERATION OF ANALYTIC NORMAL FUNCTIONS OF MATRICES

REMARKS ON ESTIMATING THE LEBESGUE FUNCTIONS OF AN ORTHONORMAL SYSTEM UDC B. S. KASlN

On the Distribution o f Vertex-Degrees in a Strata o f a Random Recursive Tree. Marian D O N D A J E W S K I and Jerzy S Z Y M A N S K I

About One way of Encoding Alphanumeric and Symbolic Information

ISOMORPHISMS OF STABLE STEINBERG GROUPS** 1. Introduction

SINGULAR PERTURBATIONS FOR QUASIUNEAR HYPERBOUC EQUATIONS. a " m a *-+».(«, <, <,«.)

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal

COMPLETE HYPERSURFACES WITH CONSTANT SCALAR CURVATURE AND CONSTANT MEAN CURVATURE IN Я4. Introduction

The Fluxes and the Equations of Change

FOREIGN OFFICE. ;<э. File HNP zibr. KM 2Щ-г_ (CLAIMS) N a m e o f File :

arxiv: v1 [math.na] 25 Sep 2012

A SUFFICIENTLY EXACT INEXACT NEWTON STEP BASED ON REUSING MATRIX INFORMATION

Math-Net.Ru All Russian mathematical portal

C-CC514 NT, C-CC514 PL C-CC564 NT, C-CC564 PL C-CC574 NT, C-CC574 PL C-CC714 NT, C-CC714 PL C-CC764 NT, C-CC764 PL C-CC774 NT, C-CC774 PL

Cubic regularization of Newton s method for convex problems with constraints

PLISKA STUDIA MATHEMATICA BULGARICA

Spectral gradient projection method for solving nonlinear monotone equations

1. s& is a Generator on V'

CONVERGENCE BEHAVIOUR OF INEXACT NEWTON METHODS

Czechoslovak Mathematical Journal

NUMERICAL SIMULATION OF MHD-PROBLEMS ON THE BASIS OF VARIATIONAL APPROACH

Nonlinear equations. Norms for R n. Convergence orders for iterative methods

Math-Net.Ru All Russian mathematical portal

Research Article A Two-Step Matrix-Free Secant Method for Solving Large-Scale Systems of Nonlinear Equations

A new nonmonotone Newton s modification for unconstrained Optimization

An Accelerated Block-Parallel Newton Method via Overlapped Partitioning

ON THE HARNACK INEQUALITY FOR HARMONIC FUNCTIONS ON COMPLETE RIEMANNIAN MAINFOLDS** 1. Introduction

THE INEXACT, INEXACT PERTURBED AND QUASI-NEWTON METHODS ARE EQUIVALENT MODELS

Counterexamples in Analysis

Hk+lYk 8k, Hk+ Hk + (Sk Hkyk)V[, LINEAR EQUATIONS* WHY BROYDEN S NONSYMMETRIC METHOD TERMINATES ON. Y g(xk+l) g(xk) gk+l gk

tfb 1 U ъ /ъ /5 FOREIGN OFFICE llftil HNP XI?/ Чо /о/ F il e ... SI» ИJ ... -:v. ' ' :... N a m e of File : Re turned Re turned Re turned.

EXTENSION OF MULTIPLIERS AND INJECTIVE HILBERT MODULES. 0. Introduction

O N T H E fc**-order F-L I D E N T I T Y

3 /,,,:;. c E THE LEVEL DENSITY OF NUCLEI IN THE REGION 230 ~ A < 254. A.L.Komov, L.A.Malov, V.G.Soloviev, V.V.Voronov.

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005

An improved generalized Newton method for absolute value equations

Tibetan Unicode EWTS Help

Numerical Method for Solving Fuzzy Nonlinear Equations

; ISBN

Numerical Methods for Large-Scale Nonlinear Systems

PLISKA STUDIA MATHEMATICA BULGARICA

A new Newton like method for solving nonlinear equations

Application to Quasi-Newton Methods*

Czechoslovak Mathematical Journal

Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations

A NOTE ON GENERALIZED DERI VATION RANGES

estimate the diameters of the octahedron B, 1 <i?i<oo, in the metric of Let us specify some of the notation to be used below.

ON THE CONVERGENCE OF HALLEY'S METHOD

NONLINEAR DIFFUSIVE PHENOMENA OF NONLINEAR HYPERBOLIC SYSTEMS*** 1. Introduction

The speed of Shor s R-algorithm

ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES

Handout on Newton s Method for Systems

Czechoslovak Mathematical Journal

NONLINEAR CONTROL FOR HIGH-ANGLE-OF-ATTACK AIRCRAFT FLIGHT USING THE STATE-DEPENDENT RICCATI EQUATION

D ETERM IN ATIO N OF SO URCE A N D V A R IA B LE CO EFFICIEN T IN TH E INVERSE PROBLEM FO R TH E W A V E S EQUATION. G.I.

DYNAMIC ONE-PILE NIM Arthur Holshouser 3600 Bullard St., Charlotte, NC, USA, 28208

o K(s, t)f(t)(s tp) dt g(s), 0 < =< T, with given p > 0 and 0< a < 1. Particular attention is

STRONGER DISTORTION THEOREMS OF UNIVALENT FUNCTIONS AND ITS APPLICATIONS. R eh F uyao ( fe is %,) (Fudan University) Abstract

Kantorovich s Majorants Principle for Newton s Method

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

New Inexact Line Search Method for Unconstrained Optimization 1,2

On the Local Convergence of an Iterative Approach for Inverse Singular Value Problems

Journal of Computational and Applied Mathematics

GLOBAL SMOOTH SOLUTIONS OF DISSIPATIVE BOUNDARY VALUE PROBLEMS FOR FIRST ORDER QUASILINEAR HYPERBOLIC SYSTEMS

ON LINEAR RECURRENCES WITH POSITIVE VARIABLE COEFFICIENTS IN BANACH SPACES

Numerical Methods for Large-Scale Nonlinear Equations

Slowing-down of Charged Particles in a Plasma

Constructing models of flow chemicals technology systems by realization theory

LIFE SPAN OF CLASSICAL SOLUTIONS TO n u = \n\p IN TWO SPACE DIMENSIONS. 1. Introduction -

APPH 4200 Physics of Fluids

INITIAL BOUNDARY VALUE PROBLEMS f OR QUASILINEAR HYPERBOLIC-PARABOLIC COUPLED SYSTEMS IN HIGHER DIMENSIONAL SPACES

DELFT UNIVERSITY OF TECHNOLOGY

A REVERSIBLE CODE OVER GE(q)

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

Časopis pro pěstování matematiky

YURI LEVIN AND ADI BEN-ISRAEL

AN ITERATIVE METHOD FOR COMPUTING ZEROS OF OPERATORS SATISFYING AUTONOMOUS DIFFERENTIAL EQUATIONS

A NOTE ON PAN S SECOND-ORDER QUASI-NEWTON UPDATES

K.G.Klimenko ON NECESSARY AND SUFFICIENT CONDITIONS FOR SOME HIGGS POTENTIALS TO BE BOUNDED FROM BELOW

Control Structure of Chemical Reactor

Pledged_----=-+ ---'l\...--m~\r----

A PROJECTED HESSIAN GAUSS-NEWTON ALGORITHM FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS AND INEQUALITIES

Quasi-Newton methods for minimization

Convergence Conditions for the Secant Method

Newton-type Methods for Solving the Nonsmooth Equations with Finitely Many Maximum Functions

nail-.,*.. > (f+!+ 4^Tf) jn^i-.^.i

Bounds for Eigenvalues of Tridiagonal Symmetric Matrices Computed. by the LR Method. By Gene H. Golub

DYNAMIC THEORY X-RAY RADIATION BY RELATIVISTIC ELECTRON IN COMPOSITE TARGET. S.V. Blazhevich, S.N. Nemtsev, A.V. Noskov, R.A.

Czechoslovak Mathematical Journal

GENERAL SOLUTION OF FULL ROW RANK LINEAR SYSTEMS OF EQUATIONS VIA A NEW EXTENDED ABS MODEL

,,,, VI В -, В..,

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Nonlinear Programming

A Common Fixed Point Theorem for a Sequence of Multivalued Mappings

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

Global Convergence of Perry-Shanno Memoryless Quasi-Newton-type Method. 1 Introduction

Transcription:

Chin. Ann. of Math. 14B: 2(1993), 213-224. QN THE CONVERGENCE ANALYSIS OF THE NONLINEAR ABS METHODS H u a n g Z h ij ia n * Abstract In order to complete the convergence theory of nonlinear ABS algorithm, through d careful ' investigation to the algorithm structure, the author converts the nonlinear ABS algorithm ' into an inexact Newton method. Based on such equivalent variation, the Kantorovich type convergence of the ABS algorithm is established and the Convergence conditions of the algorithm that only depend on the initial conditions are obtained, which provides a useful basis for the choices of initial points of the ABS algorithm. 1. Introduction The ABS methods for solving systems of linear algebraic equations were presented by Abafly, Broyden and Spedicato M in 1984. In 1987, Abaffy, Galantai and Spedicato И applied the methods to systems of nohlinear algebraic equations, F(rc) = 0, F : D c M n -*M n <U) and established the following nonlinear ABS algorithm model: A lgorithm (NABS) Step 0: Choose an initial point xo 6 Stn, and let к 0. Step 1: Let = I, y[ = Xk, j := 1. Step 2: Choose e lrn, such that and let Step 3: If j < n, choose and update : ) ф 0 (1.2) Шп such that (1.3) (1.4) w f r a f W iiiy f) = l. (1-5) # $ = (1.6) Let j := j +1, go to step 2; otherwise, go to Step 4. Step 4: Let Xk+1 = уц+ц к := k + l, go to Step 1. Manuscript received October 30, 1990. " Department of Statistics and Operations Research, Fudan University, Shanghai 200433, China.

214 CHIN. ANN. OF MATH. Vol.14 Ser.B th The parameter vectors z ^ \ in the algorithm can be arbitrarily chosen except for conditions (1.2) and (1.5). In [2], the authors proved that if the parameter vectors are suitably chosen, some well-known methods, such as Gay-Brown class, can be derived from the ABS methods. Furthermore, the authors' studied the local convergence of the ABS methods, and proved that the AB$ algorithm quadrdtibally converges to a solution x* of (1.1) if the initial point x0 is sufficiently close to x*, which provided an important basis for the reliability and efficiency analysis of the ABS algorithm. In this paper, in order to complete the convergence theory of the nonlinear ABS algorithm, through a careful investigation to the algorithm structure, we convert the nonlinear ABS.algorithm into an inexact Newton method. Based on such equivalent variation, we establish'the Kantorovich type convergence of the nonlinear ABS algorithm and obtain the convergence conditions, of the, algorithm that only depend on the initial conditions, which provides a useful basis for the choices of initial points of the algorithm. 2. Preliminaries In this paper, we take the Frobenius. norm as matrix norm, and the Euclidean norm as vector norm. For the sake of brevity, we denote Vf^(pjk^) by ajk\. Denote (., Suppose that F'{xk)~x and A ^ 1 exist. Then the ABS algorithm can be expressed as Denote where * *, = * & - - 3=1 r/ifes" )' = xk - \p[k)/p{k)t a[k),, p(nk) /p )T a ^ }] /n(ynfe)). = xk ~ F 'i x ^ F i x k ) + [F'{xk)~l - A ;x]f(xk) ^ A ^ F ( x k ) - D k Г >i(2/f>) 1.fn(yn]) I > ' '.r I \ Vk = Uk + Ak xvk, и к = \Р 1(хк)-1 - Л 1}р Ы (2.1) (2.2) (2.3) Vk = F(xk) - AkDk h (y {*>) (2-4)

No.2 Huang, Z. J. ON CONVERGENCE ANALYSIS OF NONLINEAR ABS METHODS 215 Now we give the following basic properties of the ABS algorithm. The proof can be found in [1, 2], or can be obtained by simple calculation from the algorithm and the known properties. Property 2.1. = 0, 1 < j < i < n. Property 2.2. H f )2 *= H f \ j = 1,, n. Property 2.3. If a^k\ a ^ \, are also linearly independent. Property 2.4, a f )T(y{% - yjk)) = - fj( y jk)), 1 < j< n. Property 2.5. 1 1 AfcDfc = /(*) lij 1 where are linearly independent, then p[k\ p^k\, p ^ l < j < i < n - 3. Variation of the Algorithm First of all, we make the following assumption on F(x): (Al): F(x) is continuously differentiable on some open convex set Do C D, and there exists a constant Ко >0 such that \\F '{ x )-F,(y )\\< K o \\x -y l \/x,y e D Q. (3.1) (A2): There exists xo Do such that F^xo)-1 exists. Let F'(xo)-1 < bo. Under the above assumptions, by the continuity of F(x), there exists a constant ro > 0 such that Moreover, from (Al), we have j?(x<j,2ro) C Do, (3.2) F(x) < 2 F(x0), Vx S( 0,r0). (3.3) \\F (y)- F (x )-F '(x )(y -x )\\< ~K0\\x~y\\, Vx,j/eD0. (3.4) We also make the following assumption to the choices of parameter vectors and w ^ : (A3): There exists a constant Г > 0 such that X>fcH< r, k = 0,1,..., (3.5) Under the above assumptions, we have the following lemmas. Lemma 3.1. Suppose that (Al) and (A2) hold. Then there exist two constants ri > 0, а > 0 such that for any z\,, zn e B{xo,r{), the matrix [V/i(zi),,V /re(zn)] is invertible and satisfies [V/i(^),-.,V/n( ^ r 1 <a The proof of Lemma 3.1 can be obtained by simple calculations. The following lemma is direct from Lemma 3.1.

216 CHIN. ANN. OF MATH.1 ; Vol.14 Ser.B Lemma 3.2; Suppose that (АГ) and (A2) holdi/then, for any x B(xq, r\), F'{x)~l exists: and satisfies :. Л no. м r- :.. ; -.'m 11^ 'С )"1 II <«..!, ;, Let ' r = min{ro,rij,', / Ki = max{ F'( ) \x. e B(xQ, 2r0)},,.,,,.,.. K 2 = min{r,(\/nq!a'o)~1}, K s = (i + r K 1)n- 1.: Lemma 3.3. Suppose that (Al), (A2) and (A3) hold and that Й*о)11 < \K ik 2K ; \ If Xfc B(xo,r), then for any j, there hold fi) I!s(vf)\ < (i + r j ^ - F(a^),,.... (iii.) fr B(x.2r)... r..... Proof. By induction. For j = 1, (i) obviously holds. Since II»? - *? > l - 1 1 =- r F ( x t ) l. (ii) also holds for j = 1. From (ii) and (3.3), we have l4*' - i Г2 F(j,,)l < 2Г АГ1АГ2^з_1/2 < K 2 <r. It follows that : i...»a^ oj.< \\yff~ 2/? 'II + ^ o < 2r. It implies that B(xo,2r). Thus, (i), (ii:).and (in) hpld fori = l. Suppose that (i), (ii) and (iii) hold for j, = s. Then for j = s + 1, by. the. inductive assumption,... lbf+,1 -»? ) t:[<:ifrl [l + ) I Tl] F fe ).... thus, ' /'i'1 1: : : ' 1Л«С»&)1 IAm (i S&) - /W ifc h l + 1 Л м ( Л. < к.1 1 Й )1 - Л + 1 )11... s K» «r4 { i.+ rjiri)r-ij i5 E * fc i + H )l- = (l + r j f 1)- F(xt ) i:

No. 2 : Huang, Z. J. ON CONVERGENCE ANALYSIS OF NONLINEAR ABS METHODS 217 For (ii),.we have? : ; ;i: /. <! - ь & - * Р» + Ы Й - - 1 < и - / m i(^+v)p1 «M + i: 1+i II+ HkS+i - iwii ' : 1 " 1 ' : <:r l / ^ l ( ^ 1t + ^ ' -! > f < Г(1+ rjf,)* F(*n) + КГЧ(1+ и, ) 1 - i ] ) li - Л Т 'К 1 I ГА.)*-1-1] П*»>. By (ii) and (3.3), we have 1 1 1' ll& -» S,ll<^rM (i+rjfir+v-i]2 F(W)ll <2K1-1[(i + TKi)a+t - 1] K ik 2K ^ I2 It follows that llii+2s '*o)l < \\y(s+2 2/i*)ll + llmfc) ж0 Г< 2r, i.e., yl+2 B(xoi 2r). Therefore, the proof is b&npleted. Lemma 3.4. suppose,that (Al), (A2) and (A3) hold, and that If Xk B(xo,r), then ; ; F( ohi <'KiK2Ks*'li. - (i) \\Ak - F ' ( * fc) j < у / а К о К ^ + Т К ^ - 1 ] % 0,, (ii) Ak is invertible and satisfies $A?\\<K4, where K 4 is a constant. Proof, (i) Under the assumptions of Lemma 3.4, by Lemma 3.3, we have y^k) e B(x0,2r) C D0, Thus, again from Lemma 3.3, for any j we have l a?0 - Vj. = V (sf) - V/jfe?))ll ' S-K-olls/f-yPlI < JfoJsrrMtl + глг,)^-1 - : ' < K0K { l,fl -Г А ',)"'' - W * *» It follows that ; ',r IIAfc - P (* t) < J i K 0K i 4 (1 + т е о ч т * - 1 ]И ч ). (ii) Let /3 = 2у/паКоК^1 K 3 \\F(xo)\\- Ftom (i) we have 1 l J?'( ^ ) - 1 At - F'feJH < а<йк0к, % + ГК{р-> - l]2;if(x0) < Ц < 2,ЛГпА'0К'Г1К'з K,K,K ; 4 i < y/nockok2 < 1. Thus, by the Banach Perturbation Lemma, we see that Ak is invertible and satisfies 11 /* - 1ll < 11^Чжь)-1 /( 1 -

218 CHIN. ANN. OF MATH. Vol.14 Ser.B Based on the above lemmas, we can establish the following variation theorem. Theorem 3.1. Suppose that (Al), (A2) and (A3) hold, and that F ( x 0) < K ^ K ^ / 2. Ifx k 6 B(xo,r), then the iterative procedure of theabs algorithm at the к-th iteration can be expressed as Xk+i = xk - F'(xk) 1F(xk) + Vk, where \\rjk\\ < M\\F(xk)\\2, M > 0 is a constant. Proof. FVom (2.3), we have м = т щ у ч А к - F '( x k M k ] < П * * Г 1 11* - F'(rrfc) A^1 F(iCfc) < V ^a K o K i1 [(1 + 1В Д "-1-1] РЫ 1*4 ^Ы 11 - у/^акок^к^г+ткхг-1 - l] -f1(fffc)ll2- (3.6) (3.7) Denote FfcT = [V^,, Vn*^]. Then,miaking use of Property 2.5, we have ^ =!, ы - [ i f,1^1,0,...,o] 3-1 = Л Ы - E i f u v f ) + fiivfb]. S=1 i - i U v f ) - ЫуУ) - - t )T E 8=1 = U v f ) - fjivf) ~ f i v P -v f)- Thus, from (3.4) and Lemma 3.3, we obtain flfal10) l/ (tf ) < (70*7=1(1 + ГАГ,)"-1-1!'2!F(»-or2/2. It follows that llvil! < VSKbAT^Kl.+m ) " - 1 - l]2 F(*s) f /2. (3.8) Combining (2.2), (3.7) and (3.8), we obtain M l < \\Uk + AblVk[\ < /* + A j Vb < ^ а К КГ17Г4[(1 + ГВД - 1-1 ] Г Ы 2. + К, \Л1А'о* 7 21(1 + Г А ',)-1-1]2,F(i *)I 2/2 = VSKoKT'AT.Kl + га:,) - 1 -!][<* + A fr'((l + ГА,) - 1-1)/2] F(^)II2. Let M = y/^k ok ^K ik l + TKi)nr x - l][a + АГ1-1((1 + ГАГ1)п-1-1)/2]. Therefore, Theorem 3.1 is proved.

No.2 Huang, Z.J. ON CONVERGENCE ANALYSIS OF NONLINEAR ABS METHODS 219 Through the above analysis, we know that the equivalent variation (3,6) of the ABS algorithm can be viewed as an inexact Newton method, and tl^at the error term satisfies 11*7*11< M * ) 2. Therefore, the further investigation on the convergence of the nonlinear ABS algorithm can be made to the inexact Newton variation (3.6). 4. The Kantorovich Type Convergence Theorem In this section, based on the algorithm analysis in the last section, we establish the Kantorovich type convergence theorem of the nonlinear ABS algorithm. First of all, we prove the followingiemmas. ;n. ; Lemma 4.1. Suppose that (Al), (A2) and (A3) hold and that I fx k B(xo,r), then \\F(x0)\\<m in{klk2k ^ 1/2,(2M K1)-1}. 1-2MKi\\F(x0)\\ ^ fc+1 ; 1 -^ Proof. From the iterative procedure (3.7), we have. ; ; <, F(xk) = F'(xk)(xk - a:fc+x) + F'(xk)vk- Then by (3.3), we have the following inequality It follows that \\F(xk)\\ < IIF'CajfeJIHIxfc - Zfe+iH + F,( fc) i7fc < K x\\xk+x - x k\\ + K xm\\f(xk)\\2 / }< KiWxk+г - mfc + 2MK1\\F(xo)\\\\F(xk)\\. (1-2MK 1 \\F(x0)\\)\\F(xk)\\ < K x 11**+! - x*. ; Since 1-2M Ki\\F(xk)\\ > 0, from the above inequality we obtain K i F(xfe) < 1 _ 2M Ki\\Ffa)\\ INfc+i Lemma 4.2. Let the function g(t) be of the form т at 9{t) = + at + 0 < t < 1 /a, 2(1 r) 1 т l at' where a > 0, 0 < r < 1/2. Then, for any 0 < t < t = (1. 2r)/4a, g(t) < 1 r. Proof. It is easy to see that 0 < t < 1/a. Solving the inequality we see that for any Q < t < t - g(t) - (1 - t) < 0, (4.2) 4r2 Ют + 4 [2r 2-9r + 8 + V (2r 2-9r + 8)2-8(1 - r)(2r2-5r + 2)]a inequality (4.2) holds. Since for 0 < r < 1/2 2r2 5r + 2 t > (2r2-9r + 8)a > (1 2r)/4a =. i,

220 CHIN. ANN. OF MATH. Vol.14 Ser.B we have, for any 0 < t < t, g(t) < 1 -* r. ; - < Now we establish the following Kantorovich type convergence theorem of the nonlinear ABS algorithm. Consider ж*. Do., O?1 exists, we assume that 2г,,(ж*)-1 <. 6*. Denote u,.. Afc = fc+i -X k, a V " f' 0fc = A f e H,! ; '!, s ' 1 K5 '='mdx{\\f(x)\\\xeb(xo,2r)}. Theorem 4.1. Suppose that (Al), (A2) and (A3) hold and that.., : 4 = A o < t <1/2, 1 ' (4.3) \\F(xo)\l<min{K1K2K f1/2,(l-2t)/8mk1,tr/(bo + MK5)}. (4.4) Then, starting from xq, the sequence {ж*.} generated by the nonlinear ABS algorithm remains in B(xo,r) and converges to the unique solution x* Of (1.1) in B(xo,ri). Proof. It is easy to see that under the assumptions of Theorem 4.1 the conditions of Lemma 4.1 hold. First of all, we prove the following consequence: under the assumptions of the theorem, if ж*, Xfc+i e B(x0,r) and 9k < r, then Since Afc+1 < (1 - т) Д*.. ' (4.5) Since xk, Xk+i B(x0,r), F'(xk) and F'( fc+i) are invertible. Let by Neumann lemma we obtain Gk = F 'ix k r^f 'ix k ) - F'(xk+1)]. \ m <'Ц ^ w - i iiiif,(*fc) - * w > i ЬкКо\\Хк ~ Xk+l = bfciifoliafc Let bk+i = i>k/(l - 9k). From the identity ( J - C?fe) - 1 < 1/(1-6»fc). we have From (3.6), we have n x k + i ) ' 1 = У - e hr lf ( x k ) - \ < j(7-g»)-1j 0 W,ll.. < bk/(l - Ok) = bk+i. F(xk+1) - F(xk+1) - F ( x k) - F'(xk)(xk+i - xk) + F'(xk)r]k

No.2 Huang, Z. J. ON CONVERGENCE ANALYSIS OF NONLINEAR ABS METHODS 221 Thus, A fc+i ~-F,,(x fc+ i)~ lj^ (icfe + i)+ 7Ifc+i = -(I-G k)~lf \x k) - x[fr{xk+x)-f{xk)-f '{xk){xk+i - xk)+f'(xk)r]k}+r)k+1 Since,,, > f Ь + 1 < М Р ( Жл+1) 2 < М ( ^ Ц +1) - F(xk)II + lis(*fc) ) F (* ^i) < 2M(K1\\xk+l - xfc + F(xfc) ) F(a;o) 1 = 2Д«Г1 И*а) Дк + 2M F( o) F(a;fc), (4.7) by (4.6), (4.8) and Lemma 4.1 we have 1 4 m l - Я ч ) - П Х «т -» ) l l + I N «t t e t i l l Й /2К'о хь+1 - ** 2 + M W * k )ll2] 1.. 0 Sk f 2M -JT, F(ci,) a»l +? 1 Д О * > ) Й «) _ <T4 f t l ^ l l / 2 + 2M F(x0) ^T- ^ ^ A, i : : ' ; + 2Mg, i^o)iihat +2М РЫ11г _ 2Mf; jf (-) [llatll h At!H-2Mft-, inx.)ill At i 4- ^, 2w S - I' I A4I 2 ( l - «) 1 - в к l- 2 M K 1\\F(x0)\\' r 2M K i \\F(xq)\\ <( + 2M K 1\\F(x0)\\ + ] Afc. 1 - т 1-2MK1\\F(x0)\\ 2 (1 _ r ) By (4.4) and Lemma 4.2, we obtain l Afc+1 l < (1 - T)IIAfc By making use of the above consequence, we can prove by induction that (i) h < r, (u)rcfc+i B(x0,r). 1 ; ' For к = 0, (i) obviously holds. Since M. > ; Aoll = - F'(xo)~lF(xo) + %., :>. Г, < [ ^(^o)-1 lil^ o ) 4-Af i.f(rro) ^ > - ' <(bq+ M K 5)\\F(xo)\\ < (b0 + М К 5)тг/(Ьо + М Щ tr < r, (4.8) (ii) holds for k = 0. Suppose that (i) and (ii) hold for k < m. Then for A: == ra+1, by the inductive assumptions and (4.5), we have Дв+1 < (1 -г ) Д в, 1 < s < m.

222 CHIN. ANN. OP MATH.. Vol.14 Ser.B It follows that ^m+1 bm+iiiro Am+l ' - т ^ ^ ( 1 " т) Лт 1 1 ' ' < 6т К- т Д,,. - 0, < r. ' (4.9) Moreover, from (4.9), we have m+l m+1 ',. lkm+2 :«o < X! H ^tl ~ Ж*И= Z ) HAsll 8=6 8=0 1m + l ' oo 1' ' 8=0 8=0 = ^ Ao < \ r r = r. T T It implies that xm+2 B(xo,r). Thus, (i) and (ii) hold for any k, which implies-that (4.5) hold for any k. Hence, we have ЛкГ<(1-г)ЦД*.., : < <(! r)*- Aoi. ' It follows that Дfc > 0 as fc > oo, which implies that {ж*} is a Cauchy sequence. Therefore, {ж*,} is convergent. - Suppose that ж* >ж*. Letting m» oo at both sides of (4.9) and making use of (4.8), we have OO OO Ik - * 4 < ЦЛ.11 < E o T)*IIAo II. : 8=0 8=0. ; / =i A! < r. It implies that ж* e В(жо,ж). By Lemma 4.1, we have - 1-2 М # 1 Р(ж0) ^ '!+1 " ^ Letting к >oo, we have lim Р(ж*.) =0. fc >oo By the continuity of F(ж), we obtain F(x*) == 0, that is, x* is a solution of (1.1). Suppose that there exists another solution ж B(xo\ri). By the mean value theorem, we have f j M fjixk) - m =V /j[xfe + 0 f \ x - xk)]t(xk - ж), Vj, where (0,1). It follows that V/i[xfc + 0[k\ x - xk)]t F(xk) =. V fn [xk + (ж - Xk)]T. (xk - ж).

No.2 Huang, Z. J. ON CONVERGENCE ANALYSIS OF NONLINEAR ABS METHODS 223 Since Xk e B(x0,r) C B(x0,ri), we have X k + 9 f\x -X k ) B(xo,n), Vj. Thus, by Lemma 3.1, _V/l[ * + Rk = : - Xk)]T y f n [ X k + e f o i x - Xk)]T. = [V/i(»fe + 0[Л)(ж - ж*.)),, V/ (icfe + 9 ^ (x ^ Xk))}T ' is invertible and satisfies й * < a. Hence, from (4.10), we have It follows that Letting к * oo, we obtain xk - x = R ^ 1F(xk).,> II * - ll < 1г^1 Р(жк) < a if(xfc). " II * < Иш a I ;,( jb) = a * ) = 0., *. «- oo. / It implies that ж = x*. Therefore, x* is the unique solution of (1.1) in Ё(х^,г{). Based on (3.6), we can also give the convergence rate of the sequence {a;*}. Theorem 4.2. Suppose that the assumption of Theorem 4.1 bold. Then, starting from xq, the sequence {ж*,} generated by the nonlinear ABS algorithm quadratically convergences to the unique solution x* of (1.1) in B(xo,ri). Proof. Prom Theorem 4.1, we know that the sequence {ж*.} converges to the unique solution x* of (1.1) in B(xo,ri). Prom the iterative procedure (3.6), we have Thus, Xk+1 - X* - x k - X* - F'{xk)~lF(xk) + rn = - F'(arfc)_1[F(a;fe) - F(x*) - F'(xk)(xk - ж*)] + Vk = - П ж ьг Ч Р Ы - F(x*) - F'(x*)(xk - X*)] -f F 'ix k ^ lf 'ix k ) - F'{x*)\(xk - x*) + щ. H**+» - *1 < П**Г111РГ(**) - Я**) - *V)( * - **)ll + (ИздГЧИИ*») - *V)IIII*» - *1 + Until <ако\\хк - **irчг + offollzt - i* P + M F(n)f < o J f 0 *» - **l 2 + M F(*t) - F(a:*) 2 <\ak \\xk - x ' f + M Kl\\xt - x ' f ' < С ад Г о + Л Г - It implies that {xk} quadratically converges to ж*.

224 CHIN. ANN. OF MATH. : v. / - ^ Vol.14 Ser.B i,': ; References.( -, ;- [1] Abafiy, J., Broyden, C. G. & Spedicato, E., A class of direct methods for linear systems, Numerische Mathematik, 45 (1984), 361-376. [2] Abafiy, J., Galantai, A. & Spedicato, E., The local convergence of ABS methods for nonlinear algebraic equations, Numerische Mathematik, 51 (1987), 429*439. [3] Abafiy, J. & Spedicato, E., A generalization of Huang s method for solving systems of algebraic equations, BUML, 3-B (1984), 517-529. [4] Brent, R. P., Some efficient algorithms for solving systems of nonlinear equations, SIAM J. Numer. Anal., 10 (1973), 327-344. [5] Brown, К. M., A quadratically convergent Newtbn-like method upon Gaussian-elimination,. SIAM J. Numer. Anal., 6 (1969), 560-569. [6] Dembo, R. S., Eisenstat, S. C. & Steihaug, T., Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982), 400-408. [7] Dennis, J. Ё. & Jr. Schnabel, R. B., Numerical method for unconstrained optimization and nonlinear1 equations, Prentice Hall, Inc., Englewood Cliffa, New Jersey, 1983. [8] Gay, D. M., Brown s methbd and some generalizations, with applications to minimization problems, Cornell Univ., Comput. Sci. Tecbn. Rep., (1975), 75-225.,...., [9] Kantorovich, L. V., On Newton s method for functional equations, Dokl. Akad. SSSR, 59 (1948), 1237-1240.. : - :1.S... [10] Moret, I., On the behavior of approximate Newton methods, Computing, 37 (1986), 185-193. [11] Ortega, J. M. & Rheinboldt, W. CL, Iterative solution of nonlinear'equations in several.variables, Academic Press, 1970..i* I; - :j ;.,o i \ \ : * ;. У ч