Kinetic Energy and Work

Similar documents
Math Review Night: Work and the Dot Product

Energy, Kinetic Energy, Work, Dot Product, and Power. 8.01t Oct 13, 2004

Potential Energy, Conservation of Energy, and Energy Diagrams. Announcements. Review: Conservative Forces. (path independent) 8.

13.7 Power Applied by a Constant Force

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5

Recall: Gravitational Potential Energy

Module 12: Work and the Scalar Product

Work and kinetic energy. LA info session today at 5pm in UMC235 CAPA homework due tomorrow night.

Problem Set 4 Momentum and Continuous Mass Flow Solutions

Lecture 9: Kinetic Energy and Work 1

Welcome back to Physics 211

Physics 1A Lecture 6B. "If the only tool you have is a hammer, every problem looks like a nail. --Abraham Maslow

Announcements. 1. Do not bring the yellow equation sheets to the miderm. Idential sheets will be attached to the problems.

Math Review 1: Vectors

Work and kinetic energy. If a net force is applied on an object, the object may

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

PHYSICS 149: Lecture 17

Physics 1 Second Midterm Exam (AM) 2/25/2010

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan

Chapter 5 Gravitation Chapter 6 Work and Energy

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

In-Class Problems 20-21: Work and Kinetic Energy Solutions

Physics 2414 Group Exercise 8. Conservation of Energy

Chapter 14 Potential Energy and Conservation of Energy

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term Exam 2 Solutions

Concept of Force and Newton s Laws of Motion

Other Examples of Energy Transfer

Energy graphs and work

PHYSICS - CLUTCH CH 07: WORK & ENERGY.

Physics 8 Wednesday, October 19, Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes!

Welcome back to Physics 211

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Today: Work, Kinetic Energy, Potential Energy. No Recitation Quiz this week

Chapter 5. Work and Energy. continued

Chapter 7 Work and Kinetic Energy. Copyright 2010 Pearson Education, Inc.

Lecture 10 Mechanical Energy Conservation; Power

Work and Energy (Work Done by a Constant Force)

= M. L 2. T 3. = = cm 3

0J2 - Mechanics Lecture Notes 2

Exam 2: Equation Summary

Chapter 10 Momentum, System of Particles, and Conservation of Momentum

Work and Energy. Work and Energy

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

Chapter 4 Dynamics: Newton s Laws of Motion

System of Particles and of Conservation of Momentum Challenge Problems Solutions

Chapter 7. Work and Kinetic Energy

Chapter 6 Work and Energy

Chapter 6: Work, Energy and Power Tuesday February 10 th

Chapter 4 Dynamics: Newton s Laws of Motion

A. B. C. D. E. v x. ΣF x

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Practice Problems for Exam 2 Solutions

Work and Energy. Chapter 7

l1, l2, l3, ln l1 + l2 + l3 + ln

Chapter 7 Energy of a System

Potential Energy & Conservation of Energy

11.1 Introduction Galilean Coordinate Transformations

Welcome back to Physics 211

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition)

Work, energy, power, and conservation of energy

AP PHYSICS 1. Energy 2016 EDITION

Circular Motion Kinematics

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Mass on a Spring C2: Simple Harmonic Motion. Simple Harmonic Motion. Announcements Week 12D1

Circular Motion Dynamics

Kinetic Energy and Work

W = F x W = Fx cosθ W = Fx. Work

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Newton s First Law and IRFs

Momentum & Energy Review Checklist

Exam 2--PHYS 101--F11--Chapters 4, 5, & 6

3. What type of force is the woman applying to cart in the illustration below?

Chapter 7. Kinetic Energy and Work

WEP-Work and Power. What is the amount of work done against gravity as an identical mass is moved from A to C? J J J 4.

Chapter 5. Work and Energy. continued

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

How does the total energy of the cart change as it goes down the inclined plane?

PHYSICS. Chapter 9 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Definition of Work, The basics

14.4 Change in Potential Energy and Zero Point for Potential Energy

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Physics 207 Lecture 7. Lecture 7

ME 230 Kinematics and Dynamics

Problem 1 Problem 2 Problem 3 Problem 4 Total


Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Exam 3 Practice Solutions

Chapter 7. Kinetic energy and work. Energy is a scalar quantity associated with the state (or condition) of one or more objects.

4.4 Energy in multiple dimensions, dot product

Physics 185F2013 Lecture Two

CHAPTER 4 NEWTON S LAWS OF MOTION

Chapter 10 Momentum, System of Particles, and Conservation of Momentum

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Chapter 5 Work and Energy

Description of the motion using vectorial quantities

Chatper 7 - Kinetic Energy and Work

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Two-Dimensional Rotational Dynamics

AP Physics First Nine Weeks Review

Transcription:

Kinetic Energy and Work 8.01 W06D1 Today s Readings: Chapter 13 The Concept of Energy and Conservation of Energy, Sections 13.1-13.8

Announcements Problem Set 4 due Week 6 Tuesday at 9 pm in box outside 26-152 Math Review Week 6 Tuesday at 9 pm in 26-152

Kinetic Energy Scalar quantity (reference frame dependent) K SI unit is joule: 1 2 2 = mv Change in kinetic energy: 0 1J 1kg m /s 2 2 ΔK = 1 2 mv 2 1 f 2 mv 2 = 1 0 2 m(v 2 x, f 2 + v y, f 2 + v z, f ) 1 2 m(v 2 x,0 2 + v y,0 + v 2 z,0 )

Momentum and Kinetic Energy: Single Particle Kinetic energy and momentum for a single particle are related by K = 1 2 mv2 = p2 2m

Concept Question: Pushing Carts Consider two carts, of masses m and 2m, at rest on an air track. If you push one cart for 3 seconds and then the other for the same length of time, exerting equal force on each, the kinetic energy of the light cart is 1) larger than 2) equal to 3) smaller than the kinetic energy of the heavy car.

Work Done by a Constant Force Definition: for One Dimensional Motion The work W done by a constant force with an x-component, F x, in displacing an object by Δx is equal to the x- component of the force times the displacement: W = F x Δx

Concept Q.: Pushing Against a Wall The work done by the contact force of the wall on the person as the person moves away from the wall is 1. positive. 2. negative. 3. zero. 4. impossible to determine from information given in question and the figure.

Concept Question: Work and Walking When a person walks, the force of friction between the floor and the person's feet accelerates the person forward. The work done by the friction force is 1. positive. 2. negative. 3. zero.

Worked Example: Work Done by Gravity Near the Surface of the Earth Consider an object of mass m near the surface of the earth falling directly towards the center of the earth. The gravitational force between the object and the earth is nearly constant. Suppose the object starts from an initial point that is a distance y 0 from the surface of the earth and moves to a final point a distance y f from the surface of the earth. How much work does the gravitational force do on the object as it falls?

Work done by Non-Constant Force: One (Infinitesimal) work is a scalar Dimensional Motion ΔW i = (F x ) i Δx i Add up these scalar quantities to get the total work as area under graph of F x vs x : i= N i= N = Δ = Δ W W ( F ) x i x i i i= 1 i= 1 As N and Δx i 0 W = lim ( F ) Δ x = F dx x i i x N Δx 0 i = 1 x= x i i= N x= x f 0

Table Problem: Work Done by the Spring Force Connect one end of a spring of length l eq with spring constant k to an object resting on a smooth table and fix the other end of the spring to a wall. Stretch the spring until it has length l i and release the object. How much work does the spring do on the object as a function of x = l l eq, where l is the length of the spring?

Recall: Integration of Acceleration with Respect to Time The x-component of the acceleration of an object is the derivative of the x-component of the velocity a x dv x dt Therefore the integral of x-component of the acceleration with respect to time, is the x- component of the velocity t f a x dt = t 0 t f dv x dt dt v = x, f dv t x = v 0 v x, f v x,0 x,0

Integration of Acceleration with Respect to Displacement The integral of x-component of the acceleration with respect to the displacement of an object, is given by x f x f dv a x dx = x x 0 dt dx x f dx v = dv x x = x, f v 0 x 0 dt x dv v x x,0 x f a x dx = 2 d (1/ 2)v x x 0 v x, f v x,0 ( ) = 1 2 (v 2 x, f v 2 x,0 ) Multiply both sides by the mass of the object giving integration formula x f ma x dx = 2 d (1 / 2)v x x 0 v x, f v x,0 ( ) = 1 2 mv 2 x, f 1 2 mv 2 x,0 = ΔK

Work-Kinetic Energy Theorem One Dimensional Motion Substitute Newton s Second Law (in one dimension) F x = ma x in definition of work integral which then becomes W = x f F x dx = ma x dx x 0 x f x 0 Apply integration formula to get work-kinetic energy theorem W = x f F x dx = ma x dx x 0 x f x 0 = ΔK

Concept Question Two objects are pushed on a frictionless surface from a starting line to a finish line with equal constant forces. One object is four times as massive as the other. Both objects are initially at rest. Which of the following statements is true when the objects reach the finish line? 1. The kinetic energies of the two objects are equal. 2. Object of mass 4m has the greater kinetic energy. 3. Object of mass m has the greater kinetic energy. 4. Not information is given to decide.

Concept Question: Work due to Variable Force A particle starts from rest at x = 0 and moves to x = L under the action of a variable force F(x), which is shown in the figure. What is the particle's kinetic energy at x = L/2 and at x = L? (1) (F max )(L/2), (F max )(L) (2) (F max )(L/4), 0 (3) (F max )(L), 0 (4) (F max )(L/4), (F max )(L/2) (5) (F max )(L/2), (F max )(L/4)

Power The average power of an applied force is the rate of doing work ΔW Fapplied, x Δx P = = = Fapplied, xv Δt Δt x SI units of power: Watts Instantaneous power 2 3 1W 1J/s = 1kg m /s P = lim Δt 0 ΔW Δt = F applied,x lim Δt 0 Δx Δt = F v applied,x x

Scalar Product A scalar quantity Magnitude: A B = A B cosθ The scalar product can be positive, zero, or negative Two types of projections: the scalar product is the parallel component of one vector with respect to the second vector times the magnitude of the second vector A B = A (cos θ ) B = A B A B = A (cos θ ) B = A B

Scalar Product: Unit Vectors in Cartesian Coordinates For unit vectors We have î, ĵ ˆi ˆi = ˆi ˆi cos(0) = 1 ˆi ˆj = ˆi ˆj cos( π /2) = 0 Generally: î î = ĵ ĵ = ˆk ˆk = 1 î ĵ = î ˆk = ĵ ˆk = 0

Scalar Product: Cartesian Coordinates A = A x î + A y ĵ+ A z ˆk, B = Bx î + B y ĵ+ B z ˆk Then A B = ( A x î + A y ĵ+ A z ˆk) (B x î + B y ĵ+ B z ˆk) = A x B x + A y B y + A z B z

Kinetic Energy and Scalar Product Velocity v = v x î + v y ĵ + v z ˆk Kinetic Energy: K = 1 2 m( v v) = 1 2 m(v 2 + v 2 x y + v 2 z ) 0 Change in kinetic energy: ΔK = 1 2 mv 2 1 f 2 mv 2 = 1 0 2 m( v f v f ) 1 2 m( v 0 v 0 ) 1 2 2 m(v x, f 2 + v y, f 2 + v z, f ) 1 2 m(v 2 x,0 2 + v y,0 + v 2 z,0 )

Work Done by a Constant Force Definition: Work The work done by a constant force F on an object is equal to the component of the force in the direction of the displacement times the magnitude of the displacement: W = F Δ r = F Δ r cosθ = F cosθ Δ r = F Δr Note that the component of the force in the direction of the displacement can be positive, zero, or negative so the work may be positive, zero, or negative

Worked Example: Work Done by a Constant Force in Two Dimensions Force exerted on the object: F = F x î + F y ĵ Components: F x = F cosβ F y = F sin β Consider an object undergoing displacement: Δr = Δx î Work done by force on object: W = F Δr = FΔxcosβ = (F x î + F y ĵ) (Δx î) = F Δx x

Work Done Along an Arbitrary Path Work done by force for small displacement ΔW i = F i Δ r i Work done by force along path from A to B W AB = lim N Δ r i 0 i= N i=1 F i Δ r i B A F d r

Work-Energy Theorem in Three- Dimensions As you will show in the problem set, the one dimensional work-kinetic energy theorem generalizes to three dimensions W AB = B F dr B = ma dr B = m d B v dt d r = mdv d B r = mdv v dt A A A A A = 1 2 mv 2 1 B 2 mv 2 = K A B K A = ΔK

Work: Path Dependent Line Integral Work done by force along path from A to B W AB = lim N Δ r i 0 i= N i=1 F i Δ r i B A F d r In order to calculate the line integral, in principle, requires a knowledge of the path. However we will consider an important class of forces in which the work line integral is independent of the path and only depends on the starting and end points

Conservative Forces Definition: Conservative Force If the work done by a force in moving an object from point A to point B is independent of the path (1 or 2), W c B F A c d r (path independent) then the force is called a conservative force which we denote by F c. Then the work done only depends on the location of the points A and B.

Example: Gravitational Force Consider the motion of an object under the influence of a gravitational force near the surface of the earth The work done by gravity depends only on the change in the vertical position W = F Δ y = mgδy g g

Non-Conservative Forces Definition: Non-conservative force Whenever the work done by a force in moving an object from an initial point to a final point depends on the path, then the force is called a non-conservative force and the work done is called non-conservative work F nc W nc B A F nc d r

Non-Conservative Forces Work done on the object by the force depends on the path taken by the object Example: friction on an object moving on a level surface F = µ N friction k friction = frictionδ = µ k Δ < 0 W F x N x

Table Problem: Work Constant Forces and Scalar Product An object of mass m, starting from rest, slides down an inclined plane of length s. The plane is inclined by an angle of θ to the ground. The coefficient of kinetic friction is µ k. What is the kinetic energy of the object after it slides down the inclined plane a distance s?