Combinatorial Optimization

Similar documents
Jonathan Turner Exam 2-10/28/03

CSE 421 Algorithms. Warmup. Dijkstra s Algorithm. Single Source Shortest Path Problem. Construct Shortest Path Tree from s

Design and Analysis of Algorithms (Autumn 2017)

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

Shortest Paths. CSE 421 Algorithms. Bottleneck Shortest Path. Negative Cost Edge Preview. Compute the bottleneck shortest paths

Jonathan Turner Exam 2-12/4/03

Eager st-ordering. Universität Konstanz. Ulrik Brandes. Konstanzer Schriften in Mathematik und Informatik Nr. 171, April 2002 ISSN

Graphs: Paths, trees and flows

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

RUTH. land_of_israel: the *country *which God gave to his people in the *Old_Testament. [*map # 2]

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

1 Finite Automata and Regular Expressions

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

Eager st-ordering. 1 Introduction. Ulrik Brandes

1 Introduction to Modulo 7 Arithmetic

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

CS 103 BFS Alorithm. Mark Redekopp

OUR TEAM SHEET INDEX: Foothill Villas 10, LLC Apple Street, Suite 204, Newhall, Ca Office

d e c b a d c b a d e c b a a c a d c c e b

The University of Sydney MATH 2009

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Weighted Graphs. Weighted graphs may be either directed or undirected.

Lecture 20: Minimum Spanning Trees (CLRS 23)

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Planar Upward Drawings

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

Designing A Concrete Arch Bridge

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Strongly connected components. Finding strongly-connected components

A1 1 LED - LED 2x2 120 V WHITE BAKED RECESSED 2-3/8" H.E. WILLIAMS PT-22-L38/835-RA-F358L-DIM-BD-UNV 37

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Solutions to assignment 3

In which direction do compass needles always align? Why?

ADDENDUM. The following addendum becomes a part of the above referenced bid. All other terms and conditions remain in effect, unchanged.

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

Present state Next state Q + M N

OpenMx Matrices and Operators

11 6'-0" 9'-8 1 2" SLOPE DN. FLOOR DRAIN W/ OIL SEPARATOR TO SEWER (TYP.) C.J. 101A SLOPE PER GRADING PLAN

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

NUCON NRNON CONRNC ON CURRN RN N CHNOOGY, 011 oo uul o w ul x ol volv y y oll. y ov,., - o lo ll vy ul o Mo l u v ul (G) v Gl vlu oll. u 3- [11]. 000

EE Control Systems LECTURE 11

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Math 266, Practice Midterm Exam 2

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Phonics Bingo Ladders

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

Graduate Algorithms CS F-18 Flow Networks

Distributed Algorithms for Secure Multipath Routing in Attack-Resistant Networks

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Relation between Fourier Series and Transform

CSC 373: Algorithm Design and Analysis Lecture 9

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212,

Trader Horn at Strand This Week

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Library Support. Netlist Conditioning. Observe Point Assessment. Vector Generation/Simulation. Vector Compression. Vector Writing

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

P a g e 5 1 of R e p o r t P B 4 / 0 9

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Visit to meet more individuals who benefit from your time

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Labeling Problem & Graph-Based Solution

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

EE1000 Project 4 Digital Volt Meter

2. The Laplace Transform

24.1 Sex-Linked Inheritance. Chapter 24 Chromosomal Basis of Inheritance Sex-Linked Inheritance Sex-Linked Inheritance

Wireless & Hybrid Fire Solutions

(4, 2)-choosability of planar graphs with forbidden structures

ENJOY ALL OF YOUR SWEET MOMENTS NATURALLY

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

T h e C S E T I P r o j e c t

1K21 LED GR N +33V 604R VR? 1K0 -33V -33V 0R0 MUTE SWTH? JA? T1 T2 RL? +33V 100R A17 CB? 1N N RB? 2K0 QBI? OU T JE182 4K75 RB? 1N914 D?

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Walk Like a Mathematician Learning Task:

c 2009 Society for Industrial and Applied Mathematics

STRUCTURAL GENERAL NOTES

Midterm. Answer Key. 1. Give a short explanation of the following terms.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Erlkönig. t t.! t t. t t t tj "tt. tj t tj ttt!t t. e t Jt e t t t e t Jt

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Minimum Spanning Trees

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

TCI SERIES, 3 CELL THE COOLING TOWER CO., L.C. TCI 3 CELL SERIES GA

Solutions to Homework 5

Maximum Flow. Flow Graph

- ASSEMBLY AND INSTALLATION -

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA

Lecture 21 : Graphene Bandstructure

Your Choice! Your Character. ... it s up to you!

Beechwood Music Department Staff

MIL-DTL SERIES 2

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

Transcription:

Cominoril Opimizion Prolm : oluion. Suppo impl unir rp mor n on minimum pnnin r. Cn Prim lorim (or Krukl lorim) u o in ll o m? Explin wy or wy no, n iv n xmpl. Soluion. Y, Prim lorim (or Krukl lorim) n u o in ll minimum pnnin r. O our, o lorim only prou inl minimum pnnin r wn i i run, o w w rlly mn i vry minimum pnnin r i poil rul o o o lorim; y mkin ppropri oi urin lorim, ny priulr minimum pnnin r n oun. W in wi lmm wo proo i nilly m proo o Torm. in Ppimiriou n Siliz. Lmm. L G = (V, E) onn rp wi n wi (u, v) or {u, v} E. L (V, T ) minimum pnnin r o G, n l (V, F ) pnnin or u F T. L U V vrx o onn omponn o (V, F ), n l U E o o G vin xly on npoin in U. (T U i ll ounry o U.) Tn mon in U vin minimum wi, r i on i in T. Proo. Suppo or k o onriion o minimum-wi in U onin no o T. L {u, v} U minimum-wi. A {u, v} o T ; i r (uniqu) yl. Bu i yl onin l on vrx in U n l on vrx no in U (nmly, u n v), i mu onin nor {u, v } U irn rom {u, v}, n {u, v } mu in T. By umpion, (u, v) < (u, v ), o i w rmov {u, v } w oin nw pnnin r (V, T ), wi T = T { {u, v} } \ { {u, v } }, wi rily mllr wi n (V, T ). Bu i onri (V, T ) i minimum pnnin r. E irion o Prim lorim (or Krukl lorim) oni o in n o pnnin or, iniilly vin no, unil pnnin or om pnnin r. Tror, pnnin or rul r k irion o ir o lorim xly k. Clim. Fix minimum pnnin r (V, T ) o G. For vry 0 k n, r k irion o Prim lorim (or Krukl lorim), i i poil or rulin pnnin or (V, F ) o iy F T. Proo. By inuion on k. Clrly mn i ru or k = 0, u o Prim lorim n Krukl lorim in wi pnnin or vin no, o F = T. Suppo k. By inuion, i i poil, r k irion, or Prim lorim (or Krukl lorim) o prou pnnin or (V, F ) vin F T ; in k < n, w know F T. In k irion o Prim lorim, minimum-wi i l ou o U o vin xly on npoin in U, wr U i vrx o onn omponn o (V, F ) oninin ix vrx v rirrily on innin o lorim. In k irion o Krukl lorim, minimumwi = {u, v} i l ou o o ll wo npoin r in irn onn omponn o (V, F ); i i in U, wr U i vrx o onn omponn o (V, F ) oninin u. In ir, w y lmm ov mon in U vin minimum wi, r i on i in T, o w my l o n in T, n n F := F {} T. Tror, kin k = n in i lim, w i i poil or Prim lorim (or Krukl lorim) o prou r (V, T ). A (V, T ) w n rirry minimum pnnin r, i ow i i poil or o o lorim o in ny minimum pnnin r.

A n xmpl, onir rp own on l low. pnnin r, own prly. I wo minimum I v i on o vrx innin o Prim lorim, n o Prim lorim n Krukl lorim r y lin {, }. In nx irion, o {, } n {, } r ni o l. Slin {, } l o minimum pnnin r own in nr ov, wil lin {, } l o on own on ri.. Explin ow minimum pnnin r lorim n ily u o in mximum pnnin r in rp. Tn xplin wy, i you wn o in lon p wn wo vri in rp, uin i m niqu wi Dijkr lorim o no work. Soluion. A mximum pnnin r n oun y nin ll o wi n n pplyin minimum pnnin r lorim o rulin rp. Alrnivly, i w woul lik o work only wi nonniv wi, w n in lr wi M, rpl vry wi w wi M w, n n pply minimum pnnin r lorim. Ti i quivln o nin ll o wi n n inrin wi y M. Ti ppro work u vry pnnin r on rp wi n vri xly n, o ol wi o vry pnnin r will inr y xly (n )M. T impl ron nin wi o no work o in lon p wi Dijkr lorim i Dijkr lorim rquir ll wi o nonniv. T M w rik on work wi Dijkr lorim ir, u irn p wn ivn pir o vri my oni o irn numr o. Nin wi n n in M o wi will ror irn mulipl o M o ol wi o p, n i will no nrily prrv lon or or p.. Fin mximum low n minimum u in ollowin low nwork. Soluion. T irion o For Fulkron lorim r own low. In iur, pii o r r own irl in ry, no ll r in rn,

n nonzro low lon r r in li lu. T no ll r ivn in orm (rom[i], ow-mu[i]). Ar wi zro low r rwn ri lk rrow, ur r r rwn oul r rrow, n unur r wi nonzro low r rwn wvy li lu rrow. Blow iur i LIST o vri uil up For Fulkron lorim pror rou nwork. W r LIST quu r: no r o ri-n i wn y r ll, n y r rmov rom l-n i (ini y roin m ou) wn y r nn. (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) LIST : \; \, \; \, \, \; ; ;. T no riv ll, o w v oun n umnin p. T vlu o ll ow-mu[] i, o w n umn low y lon i p. To iniy p, w ollow rom ll kwr rom : rom[] =, rom[] =, n rom[] =, o our umnin p i. All o rom ll lon i p wr poiiv (y i no v lin minu in), o low lon vry r in i p will inr y. W ju low n rp llin pro rom innin. (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) LIST : \; \, \; \, \; \; \; \; ;. (, ) Followin rom ll kwr rom, w in umnin p. W umn low lon vry r in i p y ow-mu[] = n rp llin pro rom innin.

(, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) LIST : \; \, \; \, \; \; \; \; \;. (, ) T umnin p r i ; w umn low lon i p y. (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) LIST : \; \, \; \, \; \, \; \; \;. (, ) T umnin p r i ; w umn low lon i p y. (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) LIST : \; \, \; \; \; \; \, \; \;. T umnin p r i ; w umn low lon i p y.

(, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) LIST : \; \, \; \; \, \; \, \; \;. T umnin p r i ; w umn low lon i p y. (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) LIST : \; \, \; \; \, \; \; \;,. T umnin p r i ; w umn low lon i p y. (, ) (, ) (, ) (, ) (, ) (, ) LIST : \; \, \; \; \, \.

Now i no ll, o r i no umnin p, o i low i opiml. T vlu o i low i. A minimum u i rmin y priionin no orin o wr y riv ll in i l irion: W = {,,,,, }, W = {,,, }. W W T piy o i u i um o pii ij o r poin rom no i in W o no j in W : + + + = + + + =, wi qul vlu o mximum low, in orn wi mx-low min-u orm. No lo in mximum low ll r o orwr ro u (rom W o W ) r ur wil ll r o kwr ro u (rom W o W ) v zro low.. Crully ri n lorim or ollowin prolm: Givn impl unir rp G = (V, E), rmin wr G i ipri, n i o iv ipriion (i.., priion o vrx V ino wo U n W u vry on npoin in U n on npoin in W ). Illur oprion o your lorim on wo xmpl, on ipri rp n on non-ipri rp. Prov your lorim i orr in nrl. Soluion. Hr r p o n lorim or i prolm.. Bin wi ll vri unolor. S LIST :=.. Coo n unolor vrx v. Color v r. A v o LIST.. Coo vrx w in LIST, n rmov w rom LIST.. I ny nior o w m olor w, op: rp i no ipri.. For unolor nior x o w: olor x lu i w i r, or olor x r i w i lu; n n x o LIST.. I LIST i nonmpy, o k o p.. I r ill xi unolor vri, o k o p.. W r on. T rp i ipri. L U o r vri, n l W o lu vri; n (U, W ) i ipriion. For xmpl, onir ollowin rp, wi i ipri:

. W in wi ll vri unolor n n mpy LIST.. W oo n unolor vrx, y, n olor i r. W o LIST. Now LIST = {}.. W oo vrx in LIST ; i mu, i only lmn o LIST. W rmov i rom LIST, o now LIST i mpy in.. No nior o m olor, o w kip p.. W olor unolor nior o lu n vri o LIST. T vri r n. Now LIST = {, }.. LIST i nonmpy, o w o k o p.. W oo vrx in LIST, y, n rmov i rom LIST. Now LIST = {}.. No nior o m olor, o w kip p.. W olor unolor nior o r n vri o LIST. Ti i only vrx. Now LIST = {, }.. LIST i nonmpy, o w o k o p.. W oo vrx in LIST, y, n rmov i rom LIST. Now LIST = {}.. No nior o m olor, o w kip p.. No nior o i unolor, o r i noin o o in p.. LIST i nonmpy, o w o k o p.. W oo vrx in LIST, wi mu, n rmov i rom LIST. Now LIST i mpy.. No nior o m olor, o w kip p.. No nior o i unolor, o r i noin o o in p.. LIST i mpy, o w kip p.. Tr ill xi unolor vri, o w o k o p.. W oo n unolor vrx, y, n olor i r. W o LIST. Now LIST = {}.. W oo vrx in LIST, wi mu, n rmov i rom LIST. Now LIST i mpy.. No nior o m olor, o w kip p.. W olor unolor nior o lu n vri o LIST. Ti i only vrx. Now LIST = {}.. LIST i nonmpy, o w o k o p.. W oo vrx in LIST, wi mu, n rmov i rom LIST. Now LIST i mpy.

. No nior o m olor, o w kip p.. W olor unolor nior o r n vri o LIST. T vri r n. Now LIST = {, }.. LIST i nonmpy, o w o k o p.. W oo vrx in LIST, y, n rmov i rom LIST. Now LIST = {}.. No nior o m olor, o w kip p.. No nior o i unolor, o r i noin o o in p.. LIST i nonmpy, o w o k o p.. W oo vrx in LIST, wi mu, n rmov i rom LIST. Now LIST i mpy.. No nior o m olor, o w kip p.. No nior o i unolor, o r i noin o o in p.. LIST i mpy, o w kip p.. All vri v n olor, o w kip p.. T rp i ipri, n U = {,,,, }, W = {,, } i ipriion. For nor xmpl, onir ollowin rp, wi i no ipri:. W in wi ll vri unolor n n mpy LIST.. W oo n unolor vrx, y, n olor i r. W o LIST. Now LIST = {}.. W oo vrx in LIST, wi mu, n rmov i rom LIST. Now LIST i mpy.. No nior o m olor, o w kip p.. W olor unolor nior o lu n vri o LIST. T vri r n. Now LIST = {, }.. LIST i nonmpy, o w o k o p.. W oo vrx in LIST, y, n rmov i rom LIST. Now LIST = {}.. No nior o m olor, o w kip p.

. W olor unolor nior o r n vri o LIST. Ti i only vrx. Now LIST = {, }.. LIST i nonmpy, o w o k o p.. W oo vrx in LIST, y, n rmov i rom LIST. Now LIST = {}.. No nior o m olor, o w kip p.. W olor unolor nior o lu n vri o LIST. Ti i only vrx. Now LIST = {, }.. LIST i nonmpy, o w o k o p.. W oo vrx in LIST, y, n rmov i rom LIST. Now LIST = {}.. W noi on o nior o, nmly, m olor. Tror w rpor rp i no ipri. In orr o prov orrn o i lorim, w ir prov Propoiion rom Sion A. o Ppimiriou n Siliz, n in orr o o w ir prov lmm. Lmm. Evry lo o wlk onin n o yl. Proo. By inuion on ln l o wlk. T or nrl rp i l =. In i, wlk oni o loop (n joinin vrx o il). T loop il i n o yl. No i nno our in impl rp, wi no loop. T or impl rp i l =. In i, wlk mu yl o ln (u rp o no onin loop). For inuiv p, uppo l (or l or nrl rp). I no vrx i rp in wlk (xp ir n l vrx, wi r m), n wlk il i n o yl. Orwi, om vrx v i rp, n w n rk wlk ino wo v v wlk. Sin l i o, ln o on o v v wlk mu o, n y inuion i onin n o yl. Propoiion. A rp i ipri i i no irui o o ln. Proo. (= ) Suppo G i ipri, n l (U, W ) ipriion o vrx. Tn vry on npoin in U n on npoin in W, o vri o wlk lrn wn vri in U n vri in W. Tu wlk in n n m vrx (in priulr, yl) mu v vn ln. So G no yl o o ln. ( =) Suppo G = (V, E) no yl o o ln. W ll onru ipriion (U, W ) o G. Wiou lo o nrliy, w my um G i onn; orwi, w n onru ipriion (U i, W i ) o onn omponn prly n n k U = U i n W = W i. Fix n rirry vrx u V, n or ll v V in (v) o or ln o p rom u o v. [Sin G i onn y umpion, (v) i wll in or ll v V.] L U = { v V : (v) i vn } n W = { v V : (v) i o }. I r i n wn wo vri u, u U, n or p rom u o u, plu rom u o u, plu or p rom u o u yil lo o wlk in U. By prin lmm, u wlk onin n o yl. Bu i onri ypoi G onin no o yl, o r n no u wn vri in U. Likwi, r n no wn vri in W. So (U, W ) i ipriion. Now w li orrn o lorim. Suppo lorim rpor rp i ipri. Ti mu ppn in p, wi nno ppn unil ll vri v n olor n pro y p. I rulin vrx olorin o rp in m olor o o npoin o n, n i woul v n noi in p wn proin on npoin; o i

o no ppn. Tror vry on r npoin n on lu npoin, o (U, W ) i ipriion, n rp i in ipri. On or n, uppo lorim rpor rp i no ipri. i our wn i i noi in p wo jn vri w n x v m olor. T vri on v in p r ir vri in ir onn omponn o in olor. Evry or vrx i in r i i i n vn in rom on o v or lu i i i n o in (wr in mn numr o in or p ). I wo jn vri v m olor, n r i lo o wlk in rp [ in ( =) pr o proo o Propoiion ], o rp onin n o yl, o i i in no ipri.. Fin mximum min in ollowin ipri rp. u v w x y z Soluion. On wy o o i i o ru prolm o o inin mximum low in ollowin nwork: u v w x y z 0

T orrponin mx-low LP i own low. In i LP, vril v no vlu o low, n or r (i, j) in nwork vril ij no low lon r. T ir onrin nor low ln vry no: n oulow vry no mu 0, xp no wr i i v n no wr i i v. T rminin onrin nor pii o r rom n r o. mximiz uj o v + + + + + = v u + w = 0 u + v + w + y = 0 x + z = 0 u + v + w + y = 0 x + z = 0 x + z = 0 u u u u = 0 v v v = 0 w w w w = 0 x x x x = 0 y y y = 0 z z z z = 0 u v w x y z = v u v w x y z ll vril nonniv. An opiml oluion o i LP i v =, w = y = x = v = z =, = = = = = v = w = x = y = z =, n ll or vril 0. Tror, mximum min in i rp i own low. u v w x y z (Ti mximum min i no uniqu.)

. A mll rukin ompny l o iv ruk, n on rin y vn lo o livr. In ollowin l, pii o ruk n iz o lo r o ivn in uni o 000 poun. Dily Truk Cpiy o $00 $00 $00 $0 $00 Lo Wi A B C D E F G T ily o or ruk mu pi i ruk i o u o mk ny livri. Bu o ir loion, lo A n D nno livr y m ruk, nor n lo B n E. Formul n inr prorm o rmin wi lo oul in o ruk in orr o minimiz ol ily o. Soluion. For i {A, B, C, D, E, F, G} n j {,,,, }, l x ij {0, } ini wr lo i i o livr y ruk j. For j {,,,, }, l y j {0, } ini wr ily o i o pi or ruk j. Our ojiv i o minimiz ol ily o, wi i 00y + 00y + 00y + 0y + 00y. W v vrl o onrin. Fir, vry lo mu livr y xly on ruk, o x ij = or ll i {A, B, C, D, E, F, G}. j= T ruk pii nno x, o x Aj + x Bj + x Cj + x Dj + x Ej + x Fj + x Gj W j or ll j {,,,, }, wr W j i piy o ruk j. T ily o mu pi o u ruk, o x ij y j or ll i {A, B, C, D, E, F, G} n ll j {,,,, }, u i y j = 0 n x ij mu lo 0. Finlly, lo A n D nno livr y m ruk, nor n lo B n E, o x Aj + x Dj or ll j {,,,, }, x Bj + x Ej or ll j {,,,, }.

Tror w v ollowin inr prorm. minimiz 00y + 00y + 00y + 0y + 00y uj o x A + x A + x A + x A + x A = x B + x B + x B + x B + x B = x C + x C + x C + x C + x C = x D + x D + x D + x D + x D = x E + x E + x E + x E + x E = x F + x F + x F + x F + x F = x G + x G + x G + x G + x G = x A + x B + x C + x D + x E + x F + x G x A + x B + x C + x D + x E + x F + x G x A + x B + x C + x D + x E + x F + x G x A + x B + x C + x D + x E + x F + x G x A + x B + x C + x D + x E + x F + x G x A y, x A y, x A y, x A y, x A y x B y, x B y, x B y, x B y, x B y x C y, x C y, x C y, x C y, x C y x D y, x D y, x D y, x D y, x D y x E y, x E y, x E y, x E y, x E y x F y, x F y, x F y, x F y, x F y x G y, x G y, x G y, x G y, x G y x A + x D, x B + x E x A + x D, x B + x E x A + x D, x B + x E x A + x D, x B + x E x A + x D, x B + x E x ij {0, } or ll i {A, B, C, D, E, F, G} n ll j {,,,, } y j {0, } or ll j {,,,, }. T ormulion i ll i nry or i prolm. I i inr prorm i olv, i i oun r r i opiml il oluion, vin ol o $0: A, B A, B B B C C C C F F A, F A, F A, F A, E B, D F D, E G D, E G D, E G G D, E C, G C, D, E C, G C, D, E B, G B, D, F A, E, F A, B, G For inn, ir oluion ov x A = x B = x C = x D = x E = x F = x G =, y = y = y = y =, n ll or vril 0.