The estimation of the m parameter of the Nakagami distribution

Similar documents
G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

1.010 Uncertainty in Engineering Fall 2008

Lecture 19: Convergence

Introducing a Novel Bivariate Generalized Skew-Symmetric Normal Distribution

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

Expectation and Variance of a random variable

A statistical method to determine sample size to estimate characteristic value of soil parameters

MATH/STAT 352: Lecture 15

Topic 9: Sampling Distributions of Estimators

STATISTICAL INFERENCE

32 estimating the cumulative distribution function

Approximate Confidence Interval for the Reciprocal of a Normal Mean with a Known Coefficient of Variation

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

Lecture 7: Properties of Random Samples

Topic 9: Sampling Distributions of Estimators

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Lecture 33: Bootstrap

Modied moment estimation for the two-parameter Birnbaum Saunders distribution

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Bayesian Control Charts for the Two-parameter Exponential Distribution

Stat 421-SP2012 Interval Estimation Section

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

Module 1 Fundamentals in statistics

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Random Variables, Sampling and Estimation

Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ),

Topic 9: Sampling Distributions of Estimators

There is no straightforward approach for choosing the warmup period l.

A New Simulation Model of Rician Fading Channel Xinxin Jin 1,2,a, Yu Zhang 1,3,b, Changyong Pan 4,c

Bayesian Methods: Introduction to Multi-parameter Models

THE DATA-BASED CHOICE OF BANDWIDTH FOR KERNEL QUANTILE ESTIMATOR OF VAR

BIOSTATISTICS. Lecture 5 Interval Estimations for Mean and Proportion. dr. Petr Nazarov

Estimation of Gumbel Parameters under Ranked Set Sampling

Introductory statistics

Basis for simulation techniques

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

Sample questions. 8. Let X denote a continuous random variable with probability density function f(x) = 4x 3 /15 for

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

An Introduction to Randomized Algorithms

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

1 Inferential Methods for Correlation and Regression Analysis

Estimating Confidence Interval of Mean Using. Classical, Bayesian, and Bootstrap Approaches

Bayesian inference for Parameter and Reliability function of Inverse Rayleigh Distribution Under Modified Squared Error Loss Function

Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests

Comparing Two Populations. Topic 15 - Two Sample Inference I. Comparing Two Means. Comparing Two Pop Means. Background Reading

Element sampling: Part 2

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Chapter 6 Sampling Distributions

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

1 Introduction to reducing variance in Monte Carlo simulations

BIOS 4110: Introduction to Biostatistics. Breheny. Lab #9

Summary. Recap ... Last Lecture. Summary. Theorem


Access to the published version may require journal subscription. Published with permission from: Elsevier.

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY

Statistical Theory MT 2008 Problems 1: Solution sketches

Department of Mathematics

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Statistical Theory MT 2009 Problems 1: Solution sketches

On an Application of Bayesian Estimation

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions

Stat 319 Theory of Statistics (2) Exercises

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Confidence Intervals

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Lecture Stat Maximum Likelihood Estimation

Estimation for Complete Data

POWER AKASH DISTRIBUTION AND ITS APPLICATION

GUIDELINES ON REPRESENTATIVE SAMPLING

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons

A goodness-of-fit test based on the empirical characteristic function and a comparison of tests for normality

Section 14. Simple linear regression.

Power Comparison of Some Goodness-of-fit Tests

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula

Chapter 6 Principles of Data Reduction

Lecture 3. Properties of Summary Statistics: Sampling Distribution

TAMS24: Notations and Formulas

A NEW METHOD FOR CONSTRUCTING APPROXIMATE CONFIDENCE INTERVALS FOR M-ESTU1ATES. Dennis D. Boos

Investigating the Significance of a Correlation Coefficient using Jackknife Estimates

AAEC/ECON 5126 FINAL EXAM: SOLUTIONS

An Introduction to Asymptotic Theory

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

The standard deviation of the mean

Transcription:

The estimatio of the m parameter of the Nakagami distributio Li-Fei Huag Mig Chua Uiversity Dept. of Applied Stat. ad Ifo. Sciece 5 Teh-Mig Rd., Gwei-Sha Taoyua City Taiwa lhuag@mail.mcu.edu.tw Je-Je Li Mig Chua Uiversity Dept. of Applied Stat. ad Ifo. Sciece 5 Teh-Mig Rd., Gwei-Sha Taoyua City Taiwa jjli@mail.mcu.edu.tw Abstract: This paper itroduces the Nakagami-m distributio which is usually used to simulate the ultrasoud image. The gamma distributio is used to derive the momet estimator ad the maximum likelihood estimator because the Nakagami distributio has o momet geeratio fuctio ad too complicate likelihood fuctio. The momet estimator of m is ormally distributed with a smaller bias ad a larger stadard deviatio. The secod order maximum likelihood estimator of m is also ormally distributed with a larger bias ad a smaller stadard deviatio. The cofidece iterval for the ratio of medias from two idepedet distributios of Nakagami-m estimators is costructed. The momet estimator provides a quick uderstadig about the m parameter, while the secod order maximum likelihood estimator provides a full uderstadig about the m parameter. Key Words: The Nakagami distributio, The momet estimator, The maximum likelihood estimator, The distributio of the Nakagami-m, The ratio of medias. Itroductio The Nakagami distributio is usually used to simulate the ultrasoud image. Smolikova et al. say that aalysis of backscatter i the ultrasoud echo evelope, i cojuctio with ultrasoud B-scas, ca provide importat iformatio for tissue characterizatio ad pathology diagosis[6]. Pavlovic et al. preset the joit probability desity fuctio (PDF) ad PDF of maximum of ratios mu() = R-/r() ad mu(2) = R-2/r(2) for the cases where R-, R-2, r(), ad r(2) are Rayleigh, Ricia, Nakagami-m., ad Weibull distributed radom variables[4]. Agrawal ad Karmeshu propose a ew composite probability distributio, i. e. Nakagami-geeralized iverse Gaussia distributio (NGIGD) with four parameters[]. Che applies order statistics to aalyze the performace of ordered selectio combiig schemes with differet modulatio receptios operatig i Nakagami-m fadig eviromets ad all the results are validated by comparig the special case Rayleigh distributio with the fadig figure m = i the Nakagami-m distributio[2]. Peppas presets a closed-form expressio for the momets geeratig fuctio of the halfharmoic mea of two idepedet, ot ecessarily idetically distributed gamma radom variables with arbitrary parameters[5]. With the shape parameter m ad the spread parameter Ω, the probability desity fuctio of the Nakagami distributio is as follows. f() = 2 Γ(m) (m Ω )m 2m e m Ω 2 Huag ad Johso [3] provide theorems to costruct a cofidece iterval for ratio of percetiles from two idepedet distributios. 2 The estimators of Nakagami-m 2. The momet estimator If N Nakagami(m, Ω), let G = N 2. The = g /2 ad G = N 2 gamma(m, Ω m ). J = d dg = 2 g 2 f() = 2 Γ(m) (m Ω )m 2m e m Ω 2 f(g) = 2 Γ(m) (m Ω )m g 2m 2 e m Ω g 2 g 2 = Γ(m) (m Ω )m g m e m Ω g With the shape parameter α ad the scale parameter β, the probability desity fuctio of the gamma distributio is as follows. f(g) = Γ(α)β α gα e g β E-ISSN: 2224-2902 67 Volume 3, 206

Table : The momet estimator of m m Ω ˆm.003686 29848.003686 0.75 0.753207 0.75 29848 0.753207 0.5 0.5006322 0.5 29848 0.5006322 0.25 0.2493589 0.25 29848 0.2493589 The momet geeratig fuctio: = = 0 0 M G (t) = E(e tg ) Γ(α)β α gα e ( Γ(α)β α gα e ( = ( βt )α β t)g dg βt β )g dg E(G) = M G(0) = α( βt) α ( β) t=0 = αβ E(G 2 ) = M G(0) = αβ 2 (α + ) = αβ( α )( βt) α 2 ( β) t=0 V ar(g) = E(G 2 ) E(G) 2 = αβ 2 (α+ α) = αβ 2 It ca be show that α = E(G)2 V ar(g), β = V ar(g) E(G) m = E(N 2 ) 2 V ar(n 2 ). Sice the momet geeratio fuctio of the Nakagami distributio does ot exist, it s ecessary to apply the gamma distributio i the process of fidig the momet estimator of m. If a radom sample of, 2,..., 000 is selected spread parameter Ω, the momet estimators of shape parameters are listed i Table. The value of Ω wo t affect the estimatio of m. 2.2 The maximum likelihood estimator Let be the sample size. The likelihood fuctio is L(α, β) = f(g i α, β) = = Γ(α)β α Γ(α)β α gα i The log likelihood fuctio is e g i β g i α e g i β. l L(α, β) = lγ(α)β α +(α ) l g i g i β l L(α, β) = α β β + g i β 2 = 0 ˆΩ g i =, which is the same with its momet estimator. l L(α, β) α = Γ (α) Γ(α) l β + l g i = Γ (α) Γ(α) l g i α + l g i = 0 Γ (α) Γ(α) g i l g i + l α = l The digamma fuctio is defied to be ψ(α) = d dα l Γ(α) = Γ (α) Γ(α). Now we oly eed to deal with the digamma fuctio. The likelihood fuctio of the Nakagami distributio is too complicate to fid the maximum likelihood estimator of m. Let g i l g i ψ(α) + l α = = l. Abramowitz ad Stegu fid that ψ(α) + l α = 2α + 2α 2 20α 4 +. Oe term is used to obtai the first order maximum likelihood estimator. = 2ˆα ˆm = ˆα = 2 E-ISSN: 2224-2902 68 Volume 3, 206

Table 2: The st ad 2d order maximum likelihood estimator of m m Ω ˆm ˆm 2 0.8687865.00858 29848 0.8687865.00858 0.75 0.62875 0.7499995 0.75 29848 0.62875 0.7499995 0.5 0.3945828 0.499879 0.5 29848 0.3945828 0.499879 0.25 0.763376 0.249923 0.25 29848 0.763376 0.249923 Two terms are used to obtai the secod order maximum likelihood estimator. = 2ˆα 2 + 2ˆα 2 2 2 ˆα 2 2 = 6ˆα 2 + Table 3: The bias ad the stadard deviatio of the momet estimator of m m Ω bias of ˆm stdev. of ˆm 0 0.06 29848 0 0.06 0.75 0 0.05 0.75 29848 0 0.05 0.5 0.002 0.04 0.5 29848 0.002 0.04 0.25 0.003 0.025 0.25 29848 0.003 0.025 2 ˆα 2 2 6ˆα 2 = 0 ˆm 2 = ˆα 2 = 3 + 9 + 2 2 If a radom sample of, 2,..., 000 is selected from a Nakagami distributio with the shape parameter m ad the spread parameter Ω, the maximum likelihood estimators of shape parameters are listed i Table 2. Where ˆm 2 is adjusted by its bias. The value of Ω wo t affect the estimatio of m. 3 The distributio of the Nakagamim estimator I order to compare the momet estimator ad the maximum likelihood estimator, their distributios eed to be foud. The Kolmogorov-Smirov test is applied to fid the distributio of the Nakagami-m estimator. 3. The momet estimator The momet estimator is ormally distributed with a smaller bias ad a larger stadard deviatio. Table 4: The bias ad the stadard deviatio of the secod order maximum likelihood estimator of m m Ω bias of ˆm 2 stdev. of ˆm 2 0.0 0.04 29848 0.0 0.04 0.75 0.05 0.03 0.75 29848 0.05 0.03 0.5 0.02 0.02 0.5 29848 0.02 0.02 0.25 0.03 0.0075 0.25 29848 0.03 0.0075 3.2 The maximum likelihood estimator The first order maximum likelihood estimator is ot discussed because it s too far away from the theoretical value of m. The secod order maximum likelihood estimator is ormally distributed with a larger bias ad a smaller stadard deviatio. E-ISSN: 2224-2902 69 Volume 3, 206

Table 5: The Cramer-Rao lower boud for the momet estimator of m m bias I(m) CRLB stdev. 0 33377.9 0.007 0.06 0.75 0 785200.9 0.00 0.05 0.5 0.002 227203.0 0.00089 0.04 0.25 0.003 35955.0 0.00085 0.025 Table 6: The Cramer-Rao lower boud for the secod order maximum likelihood estimator of m m bias I(m) CRLB stdev. 0.0 33377.9 0.007 0.04 0.75 0.05 785200.9 0.00 0.03 0.5 0.02 227203.0 0.00088 0.02 0.25 0.03 35955.0 0.00082 0.0075 3.3 The Cramer-Rao lower boud Ay estimator ˆα whose bias is give by a fuctio b(α) satisfies the Cramer-Rao lower boud V ar(ˆα) [ + b (α)] 2, I(α) where l L(α, β) I(α) = E[ ] 2 α = E[ Γ (α) Γ(α) l g i α + l g i ] 2 = E[ Γ (α) Γ(α) + l α ]2 The square root of Cramer-Rao lower bouds for the momet estimators are summarized i the Table 5. The square root of Cramer-Rao lower bouds for the secod order maximum likelihood estimators are summarized i the Table 6. 3.4 The media of the Nakagami-m estimators I order to compare populatio medias, the cofidece itervals for the ratio of two medias from idepedet distributios of Nakagami-m estimators are costructed by way of two rewritte theorems based o oparametric methods i Huag ad Johso [3]. m ad i the theorems are just sample sizes. Theorem Let X, X 2,..., X m be a radom sample from F ( ); let Y, Y 2,..., Y from F 2 ( ); ad let samples be idepedet. If the populatio desity fuctio ( ), is positive ad cotiuous i a eighborhood of the media m i, for,2, lim m, m(m + ) = λ, (0 < λ < ), ad m 2 0, the the 00(-α)% cofidece iterval of θ = m /m 2 is F i ˆm ± Z 0.25 ˆm α/2 2 m ˆm 2 2 [ ˆF ( ˆm )] + 0.25 ˆm 2 2 ˆm 4 2 [ ˆF 2 ( ˆm 2)] 2 Theorem 2 Let X, X 2,..., X m be a radom sample from F ( ) which has a positive cotiuous derivative F ( ) i a eighborhood of m, let Y, Y 2,..., Y be a radom sample from F 2 ( ) which has a positive cotiuous derivative F 2 ( ) i a eighborhood of m 2, ad let two samples be idepedet. Let the ratio of medias θ = m /m 2 be ukow but fiite. Uder the coditio that lim m, m(m + ) = λ, (0 < λ < ), θ values of the itersectios of ±Z α/2 ad Z M,NP (θ) = ˆm θ ˆm 2 0.25 m[ ˆF ( ˆm )] 2 + 0.25θ2 [ ˆF 2 ( ˆm 2)] 2 form the 00(-α)% cofidece iterval. Medias are estimated by order statistics, ad ˆF i ( ˆm i) is estimated by the kerel estimator for,2. Oe thousad replicatios of the radom sample X i,, X i,2,..., X i,000 are selected idepedetly from a Nakagami distributio with the shape parameter m ad the spread parameter. Oe thousad replicatios of the radom sample Y i,, Y i,2,..., Y i,000 are selected idepedetly from a Nakagami distributio with the shape parameter ad the spread parameter. The true ratio of medias from two populatios should be m. The simulated 95% cofidece itervals are listed i the Table 7. Where the momet estimator ad the secod order maximum likelihood estimator are adjusted by their bias. 3.5 The advatage ad disadvatage of two kids of estimators The momet estimator has two advatages. At first, it s much easier to fid the momet estimator tha the maximum likelihood estimator. Secodly, the bias of the momet estimator is smaller tha the bias of the maximum likelihood estimator. The maximum likelihood estimator also has two advatages. At first, the stadard deviatio of the maximum likelihood estimator is closer to the Cramer-Rao lower boud tha the stadard deviatio E-ISSN: 2224-2902 70 Volume 3, 206

Table 7: The 95% cofidece iterval of m m Thm. Estimator 95% CI MME (0.9967,.009) MLE2 (0.9993,.0078) 2 MME (0.9970,.00) 2 MLE2 (0.9990,.0080) 0.75 MME (0.7487,0.7599) 0.75 MLE2 (0.7479,0.7542) 0.75 2 MME (0.7490,0.7600) 0.75 2 MLE2 (0.7480,0.7540) 0.5 MME (0.4980,0.5060) 0.5 MLE2 (0.4984,0.5025) 0.5 2 MME (0.4980,0.5060) 0.5 2 MLE2 (0.4980,0.5030) 0.25 MME (0.2479,0.2523) 0.25 MLE2 (0.2492,0.252) 0.25 2 MME (0.2480,0.2520) 0.25 2 MLE2 (0.2490,0.250) of the momet estimator. Secodly, the cofidece iterval costructed by the maximum likelihood estimator is shorter tha the cofidece iterval costructed by the momet estimator uder all circumstaces. 4 Coclusio The gamma distributio ca be used to derive ad estimate the shape parameter of the Nakagami distributio. The cofidece iterval for the ratio of medias from two idepedet distributios of the Nakagamim estimators ca be costructed. Because the momet estimator of m is easier to be calculated ad has a smaller bias, a quick uderstadig about m ca be obtaied by fidig its momet estimator. Sice the maximum likelihood estimator of m has a smaller stadard deviatio, a full uderstadig about m ca be obtaied by fidig its maximum likelihood estimator. R programs of the Nakagami variable simulatio ad parameters estimatio ad the cofidece iterval costructio are i the appedix. Refereces: [] R. Agrawal ad Karmeshu, Ultrasoic backscatterig i tissue: characterizatio through Nakagami-geeralized iverse Gaussia distributio, Computers i Biology ad Medicie 37(2), 2007, pp. 66 72. [2] JLZ. Che, Performace aalysis for ordered selectio combiig schemes i Nakagami-m eviromets, Joural of the Frakli Istitute- Egieerig ad Applied Mathematics 342(6), 2005, pp. 638 656. [3] LF. Huag ad RA. Johso, Cofidece regios for the ratio of percetiles, Statistics ad Probability Letters 76(4), 2006, pp. 384 492. [4] DC. Pavlovic, NM. Sekulovic, GV. Milovaovic, AS. Paajotovic, MC. Stefaovic ad ZJ. Popovic, Statistics for Ratios of Rayleigh, Ricia, Nakagami-m, ad Weibull Distributed Radom Variables, Mathematical Problems i Egieerig 203, DOI: 0. 55/203/252804. [5] K. Peppas, Momets geeratig fuctio of the harmoic mea of two o-idetical gamma radom variables ad its applicatios i wireless commuicatios, Joural of the Frakli Istitute-Egieerig ad Applied Mathematics 349(3), 202, pp. 845 860. [6] R. Smolikova, MP. Wachowiak ad JM. Zurada, A iformatio-theoretic approach to estimatig ultrasoud backscatter characteristics, Computers i Biology ad Medicie 34(4), 2004, pp. 355 370. Appedix A. R program of the Nakagami variable simulatio ad parameters estimatio DistTest=fuctio(Simulated, NM,BigOmega,WriteTo, MMEbias,MMEstdev, MLE2bias,MLE2stdev) data=read.table(simulated) data.mat=as.matrix(data) raw=matrix(0,row(data), col(data)) Be=NM/BigOmega for (i i :row(data)) for (j i :col(data)) raw[i,j]=qgamma(data.mat[i, j], NM, Be) akagami=matrix(0,row(data), col(data)) for (i i :row(data)) for (j i :col(data)) E-ISSN: 2224-2902 7 Volume 3, 206

akagami[i,j]=sqrt(raw[i,j]) mesti=matrix(0,row(data),7) TmEsti=matrix(0,2,row(data)) for (i i :row(data)) mesti[i,]=mea(raw[i,])ˆ2/ var(raw[i,])-mmebias mesti[i,5]=/(2*(log(mea(raw[ i,]))-mea(log(raw[i,])))) mesti[i,6]=(3+sqrt(9+2*(log( mea(raw[i,]))-mea(log(raw[i, ])))) )/(2*(log(mea(raw[i,]))-mea( log(raw[i,]))))-mle2bias mesti[i,7]=-col(data)*digamma( NM)/gamma(NM)-col(data)*log( /Be)+sum(log(raw[i,])) for (i i :row(data)) TmEsti[,i]=mEsti[i,] TmEsti[2,i]=mEsti[i,6] write.table(tmesti,writeto, col.ames=false, row.ames=false, sep=" ") out4=mea(mesti[,]) out7=sqrt(var(mesti[,])) ksres=ks.test(mesti[,]," porm",nm,mmestdev) out8=ksres$p.value out3=mea(mesti[,5]) out4=mea(mesti[,6]) out5=sqrt(var(mesti[,5])) out6=sqrt(var(mesti[,6])) ksres2=ks.test(mesti[,6], "porm",nm,mle2stdev) out8=ksres2$p.value out9=mea((mesti[,7])ˆ2) list(meamme=out4, sdmme=out7,normalp=out8,meamle=out3,meamle2= out4,sdmle=out5,sdmle2=out6,normalp2=out8,fisheri=out9 ) A.2 R program of the cofidece iterval costructio RoMCI=fuctio(trueRatio,umer, deom, WriteTo, WriteTo2 ###, Thm, Thm2 ) mal=read.table(umer,header= FALSE, sep=" ") be=read.table(deom,header= FALSE, sep=" ") malsize=col(mal) besize=col(be) pairs=row(mal) malmat=as.matrix(mal) bemat=as.matrix(be) malker=matrix(0,pairs,+ malsize) beker=matrix(0,pairs,+ besize) Thm32=matrix(0,pairs,4) Thm42=matrix(0,pairs,4) ztheta=rep(0,) for (i i :pairs) malker[i,+malsize]=media( malmat[i,]) beker[i,+besize]=media( bemat[i,]) sortmal=sort(malmat[i,]) sortbe=sort(bemat[i,]) malup=sortmal[ceilig(malsize/ 2)+:malsize] mallow=sortmal[:floor(malsize/ 2)] beup=sortbe[ceilig(besize/ 2)+:besize] below=sortbe[:floor(besize/ 2)] a=c(sqrt(apply(mal[i,],,var)), (media(malup[:floor(malsize/ 2)])-media(mallow))/.34) A=mi(a) a2=c(sqrt(apply(be[i,],,var)), (media(beup[:floor(besize/ 2)])-media(below))/.34) A2=mi(a2) h=0.9*a*malsizeˆ(-0.2) h2=0.9*a2*besizeˆ(-0.2) for (j i :malsize) malker[i,j]=exp(-((malker[i, +malsize]-malmat[i,j])/h)ˆ2/ 2)/(sqrt(2*pi)*malsize*h) for (k i :besize) beker[i,k]=exp(-((beker[i, E-ISSN: 2224-2902 72 Volume 3, 206

+besize]-bemat[i,k])/h2)ˆ2/ 2)/(sqrt(2*pi)*besize*h2) Thm32[i,2]=malker[i,+malsize]/ beker[i,+besize] Thm32[i,]=Thm32[i,2]-.96* sqrt(0.25/(malsize*beker[i, +besize]ˆ2 *sum(malker[i,:malsize])ˆ2)+ 0.25*malker[i,+malsize]ˆ2/ (besize*beker[i,+besize]ˆ4 *sum(beker[i,:besize])ˆ2)) Thm32[i,3]=Thm32[i,2]+(Thm32[ i,2]-thm32[i,]) Thm32[i,4]=Thm32[i,]<trueRatio & Thm32[i,3]>trueRatio Thm42[i,2]=Thm32[i,2] for (l i :) theta=0.*(l-) ztheta[l]=(malker[i,+malsize]- theta*beker[i,+besize])/ i, :malsize])ˆ2)+0.25 *thetaˆ2/(besize*sum(beker[i, :besize])ˆ2)) ltheta=ztheta[ztheta>.96] utheta=ztheta[ztheta>-.96] lback=legth(ltheta)- uback=legth(utheta)- for (l i :) theta=0.*lback+0.0*(l-) ztheta[l]=(malker[i,+malsize]- theta*beker[i,+besize])/ i,:malsize])ˆ2)+0.25 *thetaˆ2/(besize*sum(beker[i, :besize])ˆ2)) ltheta=ztheta[ztheta>.96] lback2=legth(ltheta)- for (l i :) theta=0.*lback+0.0*lback2+ 0.00*(l-) ztheta[l]=(malker[i,+malsize]- theta*beker[i,+besize])/ i,:malsize])ˆ2)+0.25 *thetaˆ2/(besize*sum(beker[ i,:besize])ˆ2)) ltheta=ztheta[ztheta>.96] judge= ztheta[legth(ltheta)]-.96<.96-ztheta[legth(ltheta )+] lback3=legth(ltheta)-judge Thm42[i,]=0.*lback+0.0* lback2+0.00*lback3 for (l i :) theta=0.*uback+0.0*(l-) ztheta[l]=(malker[i,+malsize]- theta*beker[i,+besize])/ i,:malsize])ˆ2)+0.25 *thetaˆ2/(besize*sum(beker[ i,:besize])ˆ2)) utheta=ztheta[ztheta>-.96] uback2=legth(utheta)- for (l i :) theta=0.*uback+0.0*uback2+ 0.00*(l-) ztheta[l]=(malker[i,+malsize]- theta*beker[i,+besize])/ i,:malsize])ˆ2)+0.25 *thetaˆ2/(besize*sum(beker[ i,:besize])ˆ2)) utheta=ztheta[ztheta>-.96] judge= ztheta[legth(utheta)]+.96< -.96-ztheta[legth(utheta )+] uback3=legth(utheta)-judge Thm42[i,3]=0.*uback+0.0* uback2+0.00*uback3 Thm42[i,4]=Thm42[i,]<trueRatio & Thm42[i,3]>trueRatio write.table(thm32, WriteTo, col.ames=false, row.ames=false, sep=" ") write.table(thm42, WriteTo2, col.ames=false, row.ames=false, sep=" ") E-ISSN: 2224-2902 73 Volume 3, 206