Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 }

Similar documents
The end is (not) in sight: exact diagonalization, Lanczos, and DMRG

What do magnetic molecules teach us about magnetism?

Magnetic Molecules are tomorrows bits synthetic?

Frustration effects in magnetic molecules

Frustration effects in magnetic molecules. Fachbereich Physik - Universität Osnabrück

Simulations of magnetic molecules

Frustration effects in magnetic molecules

The Osnabrück k-rule for odd antiferromagnetic rings

Frustration-induced exotic properties of magnetic molecules

Frustration-induced exotic properties of magnetic molecules and low-dimensional antiferromagnets

Enhanced magnetocaloric effect in strongly frustrated magnetic molecules

Frustration effects in magnetic molecules. Department of Physics University of Osnabrück Germany

Frustration-induced exotic properties of magnetic molecules and low-dimensional antiferromagnets

A short introduction into molecular magnetism (With special emphasis on frustrated antiferromagnetic molecules)

Modern aspects in magnetic structure and dynamics

Quantum Theory of Molecular Magnetism

arxiv:cond-mat/ Oct 2001

Modeling of isotropic and anisotropic magnetic molecules

8 Quantum Theory of Molecular Magnetism

Magnetism in zero dimensions physics of magnetic molecules

Yes, we can! Advanced quantum methods for the largest magnetic molecules

Extreme magnetocaloric properties of Gd 10 Fe 10 sawtooth spin rings: a case study using the finite-temperature Lanczos method

Quantum numbers for relative ground states of antiferromagnetic Heisenberg spin rings

arxiv: v1 [cond-mat.str-el] 22 Jun 2007

Trends in molecular magnetism: a personal perspective

Exploring Magnetic Molecules with Classical Spin Dynamics Methods

Trends, questions and methods in molecular magnetism

Decoherence in molecular magnets: Fe 8 and Mn 12

Spontaneous Spin Polarization in Quantum Wires

arxiv:cond-mat/ v1 [cond-mat.str-el] 29 Mar 2005

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Magnetic quantum tunnelling in subsets of

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

Coupled Cluster Method for Quantum Spin Systems

Spins Dynamics in Nanomagnets. Andrew D. Kent

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Electron spins in nonmagnetic semiconductors

The Quantum Heisenberg Ferromagnet

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

WORLD SCIENTIFIC (2014)

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

Degeneracy Breaking in Some Frustrated Magnets

arxiv:cond-mat/ v1 12 Dec 2006

Coupled Cluster Theories of Quantum Magnetism

Quantum spin systems - models and computational methods

Magnetic ordering of local moments

First-Principles Calculation of Exchange Interactions

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

Electron Correlation

Chapter 8 Magnetic Resonance

The First Cobalt Single-Molecule Magnet

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

Dimerized & frustrated spin chains. Application to copper-germanate

arxiv:cond-mat/ v2 [cond-mat.str-el] 17 Sep 2007

Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

I. Molecular magnetism and single-molecule magnets

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Ferromagnetic Ordering of Energy Levels for XXZ Spin Chains

Transition Elements. pranjoto utomo

Luigi Paolasini

arxiv:cond-mat/ v1 1 Nov 2000

Frustrated Magnets as Magnetic Refrigerants

Magnetism in Condensed Matter

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

PBS: FROM SOLIDS TO CLUSTERS

Physics 211B : Problem Set #0

Spin liquids in frustrated magnets

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry

Magnetism. Andreas Wacker Mathematical Physics Lund University

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Advanced Lab Course. Tunneling Magneto Resistance

Magnetism of Atoms and Ions. Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D Karlsruhe

Competing Ferroic Orders The magnetoelectric effect

Spin electric coupling and coherent quantum control of molecular nanomagnets

arxiv:quant-ph/ v2 24 Dec 2003

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1

Quantum Spin-Metals in Weak Mott Insulators

Quantum Lattice Models & Introduction to Exact Diagonalization

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Dynamical Correlation Functions for Linear Spin Systems

An introduction to magnetism in three parts

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Linked-Cluster Expansions for Quantum Many-Body Systems

Quantum Phase Transitions

SUPPLEMENTARY INFORMATION

S j H o = gµ o H o. j=1

Cooperative Phenomena

Numerical diagonalization studies of quantum spin chains

26 Group Theory Basics

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED

The octagon method for finding exceptional points, and application to hydrogen-like systems in parallel electric and magnetic fields

The Ground-State of the Quantum Spin- 1 Heisenberg Antiferromagnet on Square-Kagomé Lattice: Resonating Valence Bond Description

I. Multiple Choice Questions (Type-I)

Interaction of matter with magnetic fields

The Quantum Theory of Magnetism

Transcription:

Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 } Jürgen Schnack Department of Physics - University of Osnabrück http://obelix.physik.uni-osnabrueck.de/ schnack/ Quantum Magnetism: Microscopic Techniques For Novel States Of Matter 288th WE-Heraeus Seminar, Bad Honnef, November 5th 2002 unilogo-m-rot.jpg

? Contents Contents Magnetic molecules: composition and structure Interesting phenomena: LIESST, magnetization tunneling Model Hamiltonian: Heisenberg Hamiltonian & effective Hamiltonians General results: rings, bounds, rotational bands, magnetization jumps The giant Keplerate {Mo 72 Fe 30 } Outlook unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 1

? What are magnetic molecules? What are magnetic molecules? macro molecules (polyoxometalates etc.): consist of constituents like Hydrogen (H), Carbon (C), Oxygen (O), and diamagnetic ions (e.g. Mo) as well as paramagnetic ions like Iron (Fe), Chromium (Cr), Copper (Cu), Nickel (Ni) or Manganese (Mn); pure organic magnetic molecules: magnetic coupling between high spin units (e.g. free radicals); single spin quantum number 1/2 s 7/2; Cr 4 intermolecular interaction relatively small, therefore measurements reflect the thermal behaviour of a single molecule. unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 2

? Structure of magnetic molecules Structure of magnetic molecules dimers (Fe 2 ), tetrahedra (Cr 4 ), cubes (Cr 8 ); rings, especially iron rings (Fe 6, Fe 8, Fe 10,... ); complex structures (Mn 12 ) drosophila of molecular magnetism; soccer balls, more precisely icosidodecahedra (Fe 30 ) and other macro molecules; Fe 10 chain like and planar structures of interlinked magnetic molecules. unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 3

? Example of magnetic macro molecules Example of magnetic macro molecules {Mo 72 Fe 30 } structure of {Mo 72 Fe 30 }: Fe - yellow, Mo - blue, O - red, antiferromagnetic interaction mediated by O-Mo-O bridges (1). classical ground state of {Mo 72 Fe 30 }: three sublattice structure, coplanar spins (2); quantum mechanical ground state S = 0 can only be approximated, dimension of Hilbert space (2s + 1) N 10 23. (1) A. Müller et al., Chem. Phys. Chem. 2, 517 (2001), (2) M. Axenovich and M. Luban, Phys. Rev. B 63, 100407 (2001) unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 4

? Why study magnetic molecules? Why study magnetic molecules? transition few-spin system many-spin system, contribution to understanding of bulk magnetism; transition quantum spin system (s = 1/2) classical spin system (Fe: s = 5/2, Gd: s = 7/2); easy to produce, single crystals with > 10 17 identical molecules can be synthesized and practically completely characterized; Cr 8 speculative applications: magnetic storage devices, magnets in biological systems, light-induced nano switches, displays, catalysts, qubits for quantum computers. unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 5

? Light Induced Excited Spin State Trapping Light Induced Excited Spin State Trapping (LIESST) magnetic molecules may serve as optical switches or displays; materials: spin crossover substances which show the LIESST effect; example: sixfold coordinated iron, spin-dependent radial harmonic potential; principle: reversible change in colour (and structure) when irradiated with laser light or when heated as well as cooled. http://ak-guetlich.chemie.uni-mainz.de/toss/liesst.shtml unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 6

? Magnetic molecules as storage media? Magnetic molecules as storage media? Single Molecule Magnet (SMM): magnetic molecule with high ground state spin and hysteresis (usually due to large anisotropy); every molecule is a domain of its own; very weak intermolecular interactions; high density and nevertheless good separation of magnetic moments; high ground state spin possible, e.g. S = 10 for Mn 12 ; theoretically possible storage density: 40 Tbits per square inch, today: 20 Gbits per square inch (IBM), 300GB per square inch (Fujitsu 05/2002) unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 7

? Magnetic molecules as storage media? Magnetic molecules as storage media? Disadvantages: magnetization tunneling stabilisation by appropriate substrate? Prof. Blügel, Osnabrück/Jülich, http://www.flapw.de often very small coupling (J 10 K), i.e. thermally unstable at room temperature; recording head must be very small and needs precise guide. http://www.people.man.ac.uk/ mbdssrew/winpeny intro3.html unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 8

? Magnetization tunneling Magnetization tunneling for SMM like Mn 12 (l.h.s.) an effective one-spin Hamiltonian can be used: H = DS 2 z D 4 S 4 z + H H = gµ B H x S x tunneling rate depends on initial M: M = 10 ω 10 45 Hz (H x = 100 G) M = 2 ω 10 5 Hz (H x = 100 G) macroscopic magnetization tunneling possible; c Wolfgang Wernsdorfer, Grenoble thermally activated tunneling observed. unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 9

? Model Hamiltonian Model Hamiltonian Heisenberg-Model H = i,j J ij s (i) s (j) D i ( e(i) s (i)) 2 + g µb B Heisenberg Anisotropy Zeeman N i s z (i) The Heisenberg model including anisotropy, and dipol-dipol interaction if necessary, as well as a Zeeman term describes the magnetic spectrum of many molecules with high accuracy, although its derivation by means of ab initio calculations (DFT?) remains a challenge. Since the dimension of Hilbert space equals (2s + 1) N the Hamiltonian can be diagonalized completely for small molecules. For larger ones approximate methods are used. unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 10

? Spin rings I Spin rings I Shift operator commutes with Heisenberg Hamiltonian [H, T ] = 0: T m 1,..., m N 1, m N = m N, m 1,..., m N 1 { H φ ν = E ν φ ν, T φ ν = exp i 2πk } ν φ ν, k ν = 0,..., N 1 N Properties of the k-quantum number of the ground state are known for rings of even N (Marshall, Peierls, Lieb, Schultz, Mattis). Numerical investigations revealed that the k quantum number fulfills certain rules for all spin rings, also those of odd N. K. Bärwinkel, H.-J. Schmidt, and J. Schnack, J. Magn. Magn. Mater. 220, 227 (2000); J. Schnack, Phys. Rev. B 62, 14855 (2000) unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 11

? Spin rings II Spin rings II Numerical evidence from exact diagonalization: 1. ground state belongs to H(S) with smallest possible S; 2. ground state within a subspace of constant M has S = M ; 3. if N s is integer, then the ground state is non-degenerate; 4. if N s is half integer, then the ground state is fourfold degenerate; 5. if s is integer or N s even, then k = 0; 6. if s is half integer and N s odd, k = N/2; 7. If N s is half integer, then k = (N + 1)/4 and k = N (N + 1)/4 ; (N + 1)/4 greatest integer less or equal to (N + 1)/4. unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 12

? Spin rings III Spin rings III s N 2 3 4 5 6 7 8 9 10 1.5 0.5 1 0.747 0.934 0.816 0.913 0.844 0.903 E 0 /(NJ) 1 2 1 4 1 4 1 4 1 4 1 deg 0 1/2 0 1/2 0 1/2 0 1/2 0 S 1 1, 2 0 1, 4 3 2, 5 0 2, 7 5 k 4 2 3 2.612 2.872 2.735 2.834 2.773 2.819 E 0 /(NJ) 1 1 1 1 1 1 1 1 1 1 deg S 0 0 0 0 0 0 0 0 0 k 7.5 3.5 6 4.973 5.798 5.338 5.732 5.477 5.704 E 0 /(NJ) 3 2 1 4 1 4 1 4 1 4 1 deg 0 1/2 0 1/2 0 1/2 0 1/2 0 S 1 1, 2 0 1, 4 3 2, 5 0 2, 7 5 k 12 6 10 8.456 9.722 9.045 9.630 9.263 9.590 E 0 /(NJ) 2 1 1 1 1 1 1 1 1 1 deg S 0 0 0 0 0 0 0 0 0 k 17.5 8.5 15 12.434 14.645 13.451 14.528 13.848 14.475 E 0 /(NJ) 5 2 1 4 1 4 1 4 1 4 1 deg 0 1/2 0 1/2 0 1/2 0 1/2 0 S 1 1, 2 0 1,4 3 2, 5 0 2, 7 5 k unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 13

? Bounds Bounds confine minimal energies as function of M or S, improve bounds by Berezin and Lieb (1) and our first try (2); bounds must be obeyed by approximations like DMRG; (parabolic) bounds may serve as approximation of lowest (rotational) band. (1) E. H. Lieb, Commun. Math. Phys. 31, 327 (1973) F. Berezin, Commun. Math. Phys. 40, 153 (1975) (2) H.-J. Schmidt, J. Schnack, and M. Luban, Europhys. Lett. 55, 105 (2001) unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 14

? Upper bounds I Make use of n-partiteness for upper bounds n-partiteness: graph of interactions can be mapped onto oriented cyclic graph with n vertices; e.g.: rings N-partite, triangular lattice 3-partite, square lattice 4-partite, cubic lattice 2-partite, kagomé lattice 3-partite, but not 6-partite; transform H with generalized Bloch operator U (1); variational state: φ = C M U (S ) a Ω, Ω s, s, s,... magnon vacuum. E min (M) φ H φ = c Γ s 2 + (1 c δ )δ Γ N ( Ns 2 ) 2sa(2Ns a) 2Ns 1, where c = 1 in the case of even n (bipartite) and c = cos π n for odd n. (1) I. Affleck, E. H. Lieb, Lett. Math. Phys. 12 (1986) 57 unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 15

? Bounds for the icosidodecahedron Bounds for the icosidodecahedron (1) minimal energies for the icosidodecahedron: s = 1/2 from J. Richter (2), s = 5/2 DMRG (3); upper bound rather close to true minimal energies, the better the larger s. (1) K. Bärwinkel, H.-J. Schmidt, and J. Schnack, Eur. Phys. J. B (2002) submitted, cond-mat/0210458 (2) J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24 (2001) 475 (3) M. Exler, J. Schnack, Phys. Rev. B (2002), submitted, cond-mat/0205068 unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 16

? Lower bounds for n-homogeneous Lieb-Mattis systems Lower bounds for n-homogeneous Lieb-Mattis systems H = µν J µν s µ s ν, b A µ J ab = { j in if a A µ j ex if a A µ matrix J (J µν ) be symmetric and have constant row sums j; n-hlm systems: set of spin sites be divided into n disjoint subsets of equal size m, {1,..., N} = n ν=1 A ν; within each A ν : J µν 0, but 0 between A ν and A µ for ν µ; smallest eigenvalue j min at least (n 1)-times degenerate because of n-homogeneity, j 2 is the remaining smallest eigenvalue; construction of a coupling matrix J with eigenvalues j (1), j min (n 1), j 2 (N n); J J H j j min N S(S + 1) + Nj mins(s + 1) + (N n)(j 2 j min )s. unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 17

? Bounds for the triangular lattice Bounds for the triangular lattice 9S 2 c 3s 2 3s lim N E min (S) N 9S 2 c 3s 2, where S c = S/N running from 0 to s. K. Bärwinkel, H.-J. Schmidt, and J. Schnack, Eur. Phys. J. B (2002) submitted, cond-mat/0210458 unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 18

? Rotational bands Rotational bands very often minimal energies E min (S) form a rotational band Landé interval rule (1); most pronounced for bipartite systems (2), but also a good approximation for more general systems; sometimes low-lying spectrum is a sequence of rotational bands (3). (1) A. Caneschi et al., Chem. Eur. J. 2, 1379 (1996), G. L. Abbati et al., Inorg. Chim. Acta 297, 291 (2000) (2) J. Schnack and M. Luban, Phys. Rev. B 63, 014418 (2001) (3) O. Waldmann, Phys. Rev. B 65, 024424 (2002) unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 19

? {Mo 72 Fe 30 } - rotational band hypothesis {Mo 72 Fe 30 } - rotational band hypothesis H = 2 J (u<v) s (u) s (v) D J N S 2 N SL j=1 S 2 j = H eff Fe 30 : N SL = 3; S A, S B, S C = 0, 1,..., 25; S = 0, 1,..., 75; D = 6 either from classical counterpart or symmetry considerations or properties of coupling matrix; J. Schnack, M. Luban, R. Modler, Europhys. Lett. 56 863 (2001) H.-J. Schmidt, J. Schnack, and M. Luban, Europhys. Lett. 55, 105 (2001) unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 20

? {Mo 72 Fe 30 } - magnetization {Mo 72 Fe 30 } - magnetization sequence of rotational bands rather unrealistic for this frustrated system; nevertheless magnetization at T = 0.46 K very well reproduced. J. Schnack, M. Luban, R. Modler, Europhys. Lett. 56 863 (2001) 863 A. Müller et al., Chem. Phys. Chem. 2, 517 (2001) unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 21

? {Mo 72 Fe 30 } - magnetization jump {Mo 72 Fe 30 } - magnetization jump E min (S) linear in S for high S instead of being quadratic (1); for the Heisenberg model this property depends only on the structure but not on s (2); reason for magnetization jump: independent magnons (3); see talk of Johannes Richter. (1) J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001) (2) H.-J. Schmidt, J. Phys. A: Math. Gen. 35, 6545 (2002) (3) J. Schulenburg et al., Phys. Rev. Lett. 88, 167207 (2002) unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 22

? {Mo 72 Fe 30 } - magnetization revisited {Mo 72 Fe 30 } - magnetization revisited magnetization at T = 0.46 K, although very well reproduced, rather boring; since temperature already larger than low-lying gaps, one does not learn much about the detailed level structure; closer inspection of the data shows fine structure (!); data taken at the National High Magnetic Field Laboratory (NHMFL) at Los Alamos: Ḃ(t = 0) 20000 T/s. unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 23

? Time-dependent magnetic fields Time-dependent magnetic fields magnetization tunneling at avoided level crossings description via time-dependent Schrödinger equation or Landau-Zener formula; hysteresis effects; relaxation processes due to phonons description with detailed balance; flattens hysteresis; measurements shows two things: (1) time-dependent magnetic field valuable to detect level crossings even at higher temperatures; (2) lowest rotational band predicts level crossings at almost correct positions. unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 24

? {Mo 72 Fe 30 } - lowest rotational band with DMRG {Mo 72 Fe 30 } - lowest rotational band with DMRG 800 600 400 DMRG calculation fit to rotational band lowest rotational band also confirmed by DMRG calculations; E / J 200 0 difficult to calculate since quasi twodimensional and finite; -200-400 0 10 20 30 40 50 60 70 M accuracy tested with an icosidodecahedron of s = 1/2. M. Exler, J. Schnack, Phys. Rev. B (2002), submitted, cond-mat/0205068 unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 25

? Outlook Outlook magnetic molecules is a booming field:: ICCM-2000: 200 participants, ICCM-2002: 425 participants; huge advances in coordination chemistry, it seems to be possible to synthesize every structure; dynamics plays a bigger and bigger role: relaxation, hysteresis, magnetooptical switching; interesting molecules have complicated couplings + anisotropy; molecules grow bigger and bigger huge Hilbert spaces; systematics which connects structure and properties of observables highly required; interlinked structures of magnetic molecules are beyond nowadays computing - what to do? unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 26

? The End Thank you very much for your attention. Collaboration Prof. K. Bärwinkel, Prof. H.-J. Schmidt, M. Brüger, D. Mentrup, M. Exler, P. Hage, F. Hesmer, P. Shechelokovskyy (Uni Osnabrück); Prof. M. Luban, Prof. R. Modler, Dr. P. Kögerler, Dr. Chr. Schröder (Ames Lab, Iowa, USA); Prof. S. Blügel (FZ Jülich); Prof. J. Richter (Uni Magdeburg); Dr. A. Honecker (Uni Braunschweig). unilogo-m-rot.jpg Jürgen Schnack, Universität Osnabrück, Rapidly changing magnetic field uncovers low-lying energy spectrum... 27

? Our group & Marshall Luban Our group & Marshall Luban unilogo-m-rot.jpg Ju rgen Schnack, Universita t Osnabru ck, Rapidly changing magnetic field uncovers low-lying energy spectrum... 28