Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi FACTORIZATION PROPERTIES IN POLYNOMIAL EXTENSION OF UFR S

Similar documents
On the energy of complement of regular line graphs

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder

Linear Approximating to Integer Addition

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

Factorization of Finite Abelian Groups

A Characterization of Jacobson Radical in Γ-Banach Algebras

Lecture 8. A little bit of fun math Read: Chapter 7 (and 8) Finite Algebraic Structures

CHAPTER 4 RADICAL EXPRESSIONS

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

Some distances and sequences in a weighted graph

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

Trignometric Inequations and Fuzzy Information Theory

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi

INEQUALITIES USING CONVEX COMBINATION CENTERS AND SET BARYCENTERS

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1

International Journal of Pure and Applied Sciences and Technology

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS

The Mathematical Appendix

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

IRREDUCIBLE COVARIANT REPRESENTATIONS ASSOCIATED TO AN R-DISCRETE GROUPOID

Simple Linear Regression Analysis

Chapter 9 Jordan Block Matrices

Debabrata Dey and Atanu Lahiri

1. Linear second-order circuits

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

Theory study about quarter-wave-stack dielectric mirrors

Non-degenerate Perturbation Theory

On the periodic continued radicals of 2 and generalization for Vieta s product

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A

MATH 247/Winter Notes on the adjoint and on normal operators.

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

18.413: Error Correcting Codes Lab March 2, Lecture 8

Ideal multigrades with trigonometric coefficients

4 Inner Product Spaces

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Quiz 1- Linear Regression Analysis (Based on Lectures 1-14)

Some Different Perspectives on Linear Least Squares

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 6, Number 1/2005, pp

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

Non-uniform Turán-type problems

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen

Introducing Sieve of Eratosthenes as a Theorem

THE TRUNCATED RANDIĆ-TYPE INDICES

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A note on testing the covariance matrix for large dimension

State Feedback Control Block Diagram

Chapter 2: Descriptive Statistics

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Fibonacci Identities as Binomial Sums

MATH 371 Homework assignment 1 August 29, 2013

Lecture 25 Highlights Phys 402

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES

Expanding Super Edge-Magic Graphs

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

MA 524 Homework 6 Solutions

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

Basic Structures: Sets, Functions, Sequences, and Sums

On Eccentricity Sum Eigenvalue and Eccentricity Sum Energy of a Graph

1 Onto functions and bijections Applications to Counting

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Mu Sequences/Series Solutions National Convention 2014

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

Problem Set 3: Model Solutions

Algorithms Theory, Solution for Assignment 2

Entropy ISSN by MDPI

Reliability and Cost Analysis of a Series System Model Using Fuzzy Parametric Geometric Programming

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i

V. Hemalatha, V. Mohana Selvi,

Maps on Triangular Matrix Algebras

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

Bounds for the Connective Eccentric Index

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Exercises for Square-Congruence Modulo n ver 11

Solutions to problem set ); (, ) (

( ) Thermal noise ktb (T is absolute temperature in kelvin, B is bandwidth, k is Boltzamann s constant) Shot noise

13. Dedekind Domains. 13. Dedekind Domains 117

Review Exam I Complex Analysis. Cauchy s Integral Formula (#0). Let G be a region in C, let Bar (, ) G and let γ be the circle C(a,r), oriented.

Design maintenanceand reliability of engineering systems: a probability based approach

On Optimal Termination Rule for Primal-Dual Algorithm for Semi- Definite Programming

The Primitive Idempotents in

Further Results on Pair Sum Labeling of Trees

Sebastián Martín Ruiz. Applications of Smarandache Function, and Prime and Coprime Functions

Lecture 3 Probability review (cont d)

MOSFET Internal Capacitances

Matricial Potentiation

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

ON THE LOGARITHMIC INTEGRAL

On a Truncated Erlang Queuing System. with Bulk Arrivals, Balking and Reneging

Q-analogue of a Linear Transformation Preserving Log-concavity

Summary of the lecture in Biostatistics

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

Transcription:

Joural of Egeerg ad Natural Scece Mühedl ve Fe Bller Derg Sga 25/2 FACTORIZATION PROPERTIES IN POLYNOMIAL EXTENSION OF UFR S Murat ALAN* Yıldız Te Üverte, Fe-Edebyat Faülte, Mateat Bölüü, Davutpaşa-İSTANBUL Gelş/Receved: 27..25 Kabul/Accepted: 2.4.25 ABSTRACT We vetgate the factorzato properte o the polyoal exteo A[ X ] of A where A a UFR ad how that A[ X ] a U-BFR for ay UFR A. We alo coder the rg tructure A + XI[ X ] where A a UFR. Keyword : Factorzato, Polyoal rg. MSC uber/uaraı: 3F5, 3A5. TÇA HALKALARIN POLİNOM GENİŞLEMELERİNDE ÇARPANLARA AYIRMA ÖZELLİKLERİ ÖZET A br TÇA hala (tetürlü çarpalara ayrılable hala) ola üzere A ı polo geşlee A[ X ] üzerde çarpalara ayıra özelller araştırıyoruz ve herhag br TÇA hala A ç A[ X ] U-KÇA hala (U-Kııtlı Çarpalarıa Ayrılable Hala) olduğuu göteryoruz. A br TÇA ola üzere A + XI[ X ] yapııda halaları da göz öüe alıyoruz. Aahtar Sözcüler : Çarpalara ayıra, Polo halaları.. INTRODUCTION Oe of the a proble rg theory to detere whether the polyoal exteo of ay coutatve rg R poee or ot the properte belogg to R. The purpoe of th paper to vetgate whch factorzato properte exactly atfed the polyoal exteo R[ X ] of R where R a UFR. Let R be a coutatve rg wth detty. Ay eleet ab, R are aocate, deoted by a b, f ab ad ba, that, ( a) = ( b). A out a R a rreducble (or a ato) f a = bc a b or a c. Hece rreducble f ad oly f R a tegral doa. R atoc f each ozero out eleet of R a fte product of rreducble eleet. A prcpal deal rg (PIR) called a pecal prcpal deal rg (SPIR) f t ha oly oe pre deal P R ad P lpotet, that, P = () for oe teger >. R ad to e-pota: ala@yldz.edu.tr, tel: (22) 449 7 8 95

M. Ala Sga 25/2 be preplfable f x = xy x = or y U( R). SPIR ad tegral doa are exaple of preplfable rg. Clacal rreducble decopoto ay caue the bad behavor of factorzato for oe eleet a coutatve rg becaue of otrval depotet. For exaple 5 = 5 for every potve teger 2. A U-decopoto whch troduced by Fletcher [9] elate th bad behavor of a factorzato. A U-decopoto of r R a factorzato r = ( p... p )( p... p ) uch that () () the ' p ad p are rreducble ' p ( p... p ) = ( p... p ) for =,..., ad () p ( p... p p... p ) ( p... p ) for =,...,. + Let r = ( p... p )( p... p ) be a U-decopoto of r R. The the product p... p called the relevat part ad the other the rrelevat part. Ay rreducble decopoto ca be rearraged to a U-decopoto. Two U-decopoto r = ( p... p )( p... p ) = ( q... q )( q... q ) l are aocate f () = ad () p ad q are aocate for =,...,, after a utable chage the order of the factor the relevat part. R called uque factorzato rg (UFR) f each out ha a U-decopoto, that, R atoc ad ay two U- decopoto of a out eleet of R are aocate. Fletcher how that R a UFR f ad oly f R a fte drect product of UFD ad SPIR []. There are a faly of factorzato properte whch are weaer tha uque factorzato. For a detaled tudy of thee factorzato properte tegral doa ee Ref. [4,5,6]. I th paper we coder thee factorzato properte for a coutatve rg wth zero dvor. Ay coutatve rg R called a bouded factorzato rg (BFR) f for each ozero out a R, there ext a atural uber N( a ) o that for ay factorzato a = a... a of a where each a a out we have < N( a). If we replace the codto ' that p ad p are rreducble by p ' ad p are out the defto of U- decopoto, we have the defto of U-factorzato. A coutatve rg R a U-BFR f for each ozero out a R, there ext a atural uber N( a ) o that for each U- factorzato of a, a = ( a,..., a )( b,..., b ), < N( a) []. R a UFR R a U-BFR. R called a U-half-factoral rg (U-HFR) f R U-atoc (that, every ozero out ha a U- factorzato whch all the relevat dvor are rreducble) ad f a = ( a,..., a )( b,..., b ) = ( c,..., c )( d,..., d ) are two U-factorzato wth b, d rreducble, the l =. It clear that UFR U-HFR. For thee factorzato properte ee [,7,8]. For a tegral doa D t well ow that D a UFD DX [ ] a UFD. But f zero dvor are preet the tuato ot o clear. I [2] Adero ad Marada how that R[ X ] a UFR f ad oly f R a fte drect product of UFD'. I other word R[ X ] ot a UFR f R a SPIR. I fact R ot eve a U-HFR f R a SPIR. For exaple the eleet 2 2X ha two dtct rreducble decopoto (ad U-decopoto) whch a UFR, 4 aely 2 2 2X = 2(2 + X ) = 2. X. X. 96

Factorzato Properte Polyoal Exteo I here we cotue to vetgate thee factorzato properte R[ X ] where R a UFR ad gve a potve reult for the cocept a U-BFR ad a BFR. More precely we how that f R a SPIR the RX [ ] a BFR ad f R a UFR the RX [ ] a U-BFR. We alo coder thee factorzato properte the rg R + XI[ X ] for ay deal I of R where R a UFR. I [2] Gozalez, Peler ad Robert how that A + XI[ X ] a HFD (half-factoral doa) f ad oly f I a pre deal of A for the doa cae where A a UFD. I here we vetgate whch factorzato properte are atfed the rg A + XI[ X ] for ay deal I of A where A a UFR ad how that A + XI[ X ] alway a U-BFR for ay deal I of A. For ay udefed terology or otato, ee []. 2. BOUNDED FACTORIZATION PROPERTIES ON A[ X ] Suppoe A a SPIR ad P = ( p) the uque pre deal of A, where P = () ad the allet teger whch atfe P = (). If = the A a feld. So fro ow o, we aue that > ad A, P ad wll be a above ule otherwe tated. Propoto 2.: Let A be a SPIR. If f = a + a X +... + a X A[ X] ay rreducble eleet A[ X ] the f ( X ) oe of the followg for up to aocate: () f = p () f = X + () f = a + a X +... + a X + X + a X +... + a X for oe where + a, a,..., a P + + (v) f = + a X +... + a X + X + a X +... + a X for oe where + a,..., a P. + Proof : Suppoe a P for all. We ca wrte a = pa a A. The f = p( a + a X +... + a X ). Sce f ( X ) rreducble A[ X ], f p or f f where f = a + a X +... + a X. f p p= f. c cx ( ) AX [ ] f = f. c f. Sce A[ X ] preplfable ad f ( X ), cx ( ) f a ut A[ X ], ad hece f ( X ) a ut A[ X ]. So we ay tae f = p up to aocate. If f f the f = f. d d A[ X] f = p. f. d pd. U( A). But th a cotradcto ce p ot a ut. Therefore f all a P the f = p up to ut. Now uppoe f P[ X]. Coder the cotat ter of f ( X ) : Cae I: Suppoe a =. The f = X. f f A[ X]. So ether f X or f f. f f gve X a ut a above whch a cotradcto. So f X ad f ( X ) a ut A[ X ]. Hece we tae f = X up to aocate. Now a. The ether a P or a U( A). 97

M. Ala Sga 25/2 Cae II: Let a P. The for oe a P ce f P[ X] U( A). So we ay tae a =. a. So a P Cae III: Let a U( A). We ow that ay eleet of A[ X ] a ut A[ X ] f ad oly f the cotat ter a ut A ad all other coeffcet are lpotet A. Ay out eleet of A a lpotet. So a ut be a ut A for oe ce f( X ) ot a ut A[ X ]. So aga we ay tae a =. Propoto 2.2: If A a SPIR the A[ X ] a BFR. Proof: Let f = a + a X +... + a X A[ X] be a ozero out eleet of A[ X ]. Frt ote that A[ X ] preplfable ce prary A [3]. Collectg all the factor p α each coeffcet a, we ca wrte uquely each a a a = p u where α ad α α α U( A). The f = p u + p u X +... + p u X A[ X]. Sce f the uber of u rreducble factor p ay rreducble decopoto of f ( X ) at ot. Now we how that ay factorzato of f ( X ) to a product of rreducble eleet the uber of rreducble factor a Propoto 2. at ot deg f =. It obvou that the uber of rreducble factor X ' are at ot. Let f = p... px... Xf... f be a rreducble decopoto of t f ( X ) where f rreducble a Propoto 2. other tha p ad X. Let f = a +... + a X + X + a X +... + a X, f b b X X a X a X + l + l 2 2 2 = +... + + + + +... + 2 2 2+ where a ad b 2 are the lat coeffcet of f ad f 2 whch equal to, repectvely. 2 Coder the coeffcet of X + of the product f f : 2 So + 2 ab. = + 2 > a P a b P, If + 2 < b P a b P, f + 2 + 2 = a = b = a b =. f + 2 + 2 + 2 a = + pr, r A. = + 2 Sce + pr P, + pr a ut A, ad hece ot a zero eleet. Hece by... t ducto o t we ca ee that the coeffcet of X + + the product f... f ot zero t where. So f t > the deg( f ) < deg( p... px... Xf... f ) t whch a cotradcto. Thu t ad hece A[ X ] a BFR. Followg theore []. For a coutatve rg R, a R called U-bouded f up{ a= ( a,..., a )( b,..., b ) a U-factorzato of a} <. Theore 2.3: Let R, R,..., R be coutatve rg, >, ad let R = R... R. The R 2 a U-BFR each R a U-BFR ad U-bouded. Hece R U-bouded. R Now we ca tate the a reult of th paper a a corollary. 98

Factorzato Properte Polyoal Exteo Corollary 2.4: If A a UFR the A[ X ] a U-BFR. Proof : Sce A a UFR, A a fte drect product of UFD ad SPIR, ay A = A... A. The A[ X] = A[ X]... A[ X]. If A a UFD the clearly A [ X ] UFD ad hece a U-BFR. If A a SPIR the A [ X ] a U-BFR by Propoto 2.2. Hece by Theore 2.3, A[ X ] U-BFR. Lea 2.5: Let A B be a exteo of coutatve rg. If B a BFR ad U( B) A= U( A) the A alo a BFR. Proof: Let a A be a ozero out ad let a = a... a be ay factorzato of a to out. The a U( B) for =,...,. Hece a = a... a a factorzato of a B. Sce B a BFR, N( a) for oe potve teger Na. ( ) So A a BFR. Propoto 2.6: If A a UFR the A + XI[ X ] a U-BFR for ay deal I of A. Proof : Let A = A... A, a fte drect product of UFD' ad SPIR'. The I of the for I = I... I where each I a deal of A A. So XI[ X ] = ( A... A ) + X( I... I )[ X] = ( A + XI [ X ])... ( A + XI [ X ]) + If A a UFD the by Lea 2.5 A + XI [ X ] a BFR ce A + XI [ X ] A [ X ] ad U( A + XI [ X]) = U( A[ X]) = U( A). If A a SPIR the A + XI [ X ] aga a BFR ce A [ X ] a BFR by Propoto 2.2 ad U( A[ X]) ( A + XI [ X]) = U( A + XI [ X]). Clearly A alway U-bouded each cae. Hece A + XI[ X ] a U-BFR for every deal I of A by Theore 2.4. 3. RESULTS AND DISCUSSION I th paper we cocetrate o polyoal exteo of a UFR wth zero dvor to vetgate factorzato properte related to t. We how that f A a UFR the A[ X ] alway a U-BFR ad A + XI[ X ] alway a U-BFR for ay deal I of A. We do ot ow thee reult are rea vald f the ter U-BFR ubttuted for UFR. REFERENCES [] Ağargü A.G., Adero D.D. ve Valde-Leo S., Factorzato I Coutatve Rg Wth Zero Dvor, III, Rocy Mouta J. of Math., 3, -2, 2. [2] Adero D.D., Marada R., Uque Factorzato Rg Wth Zero Dvor, Houto J. Math.,, 5-3, 985. [3] Adero D.D., Valde-Leo S., Factorzato I Coutatve Rg Wth Zero Dvor, Rocy Mouta J. of Math., 2, 2, 439-48, 996. [4] Adero D.D., Adero D.F., Zafrullah M., Factorzato I Itegral Doa, J. of Pure ad App. Algebra, 69, -9, 99. [5] Adero D.D., Adero D.F. ve Zafrullah M., Factorzato Itegral Doa II, J. Algebra, 52, 78-93, 992. [6] Adero D.F. ve El Abde D.N., Factorzato I Itegral Doa, III, J. of Pure ad App. Algebra, 35, 7-27, 999. [7] Axtell M., U-Factorzato Coutatve Rg Wth Zero Dvor, Co. Algebra, 3, 22. 99

M. Ala Sga 25/2 [8] Axtell M., Fora S., Roera N. et. al., Properte of U-Factorzato, It. J. of Co. Rg, 3, 23. [9] Fletcher C.R., Uque Factorzato Rg, Proc. Cab. Phl. Soc., 65, 579-583, 969. [] Fletcher C.R., The Structure Of Uque Factorzato Rg, Proc. Cab. Phl. Soc., 67, 535-54, 97. [] Gler R., (972), Multplcatve Ideal Theory, Marcel Deer, New Yor. [2] Gozalez N., Peler, Robert R., Elatcty Of A+XI[X] Doa Where A I UFD, J. of Pure ad App. Algebra 6, 83-94, 2.