SOME CONSTRUCTIONS OF OPTIMAL BINARY LINEAR UNEQUAL ERROR PROTECTION CODES

Similar documents
Homology groups of disks with holes

RECHERCHES Womcodes constructed with projective geometries «Womcodes» construits à partir de géométries projectives Frans MERKX (') École Nationale Su

A Simple Set of Test Matrices for Eigenvalue Programs*

Physical Layer: Outline

Support-Vector Machines

Chapter 3 Digital Transmission Fundamentals

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms

Chapter 3 Digital Transmission Fundamentals

Computational modeling techniques

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~

Chapter 3 Kinematics in Two Dimensions; Vectors

A new Type of Fuzzy Functions in Fuzzy Topological Spaces

Admissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs

MAKING DOUGHNUTS OF COHEN REALS

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

ENG2410 Digital Design Sequential Circuits: Part B

Math Foundations 20 Work Plan

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10]

Cambridge Assessment International Education Cambridge Ordinary Level. Published

A Comparison of Methods for Computing the Eigenvalues and Eigenvectors of a Real Symmetric Matrix. By Paul A. White and Robert R.

READING STATECHART DIAGRAMS

A proposition is a statement that can be either true (T) or false (F), (but not both).

Pattern Recognition 2014 Support Vector Machines

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

Differentiation Applications 1: Related Rates

Chapter 9 Vector Differential Calculus, Grad, Div, Curl

Revisiting the Socrates Example

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

ENSC Discrete Time Systems. Project Outline. Semester

Lecture 13: Electrochemical Equilibria

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India

REPRESENTATIONS OF sp(2n; C ) SVATOPLUK KR YSL. Abstract. In this paper we have shown how a tensor product of an innite dimensional

, which yields. where z1. and z2

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Source Coding and Compression

Lecture 10, Principal Component Analysis

Engineering Decision Methods

A Matrix Representation of Panel Data

Figure 1a. A planar mechanism.

QPSK Block-Modulation Codes for Unequal Error Protection

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

V. Balakrishnan and S. Boyd. (To Appear in Systems and Control Letters, 1992) Abstract

SPH3U1 Lesson 06 Kinematics

AP Statistics Notes Unit Two: The Normal Distributions

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

Tree Structured Classifier

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards:

Floating Point Method for Solving Transportation. Problems with Additional Constraints

THE FINITENESS OF THE MAPPING CLASS GROUP FOR ATOROIDAL 3-MANIFOLDS WITH GENUINE LAMINATIONS

The blessing of dimensionality for kernel methods

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp

Perturbation approach applied to the asymptotic study of random operators.

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink

Pipetting 101 Developed by BSU CityLab

Dataflow Analysis and Abstract Interpretation

3. Design of Channels General Definition of some terms CHAPTER THREE

NOTE ON THE ANALYSIS OF A RANDOMIZED BLOCK DESIGN. Junjiro Ogawa University of North Carolina

Versatility of Singular Value Decomposition (SVD) January 7, 2015

TRAINING GUIDE. Overview of Lucity Spatial

1. What is the difference between complementary and supplementary angles?

1 The limitations of Hartree Fock approximation

Chapter 2 GAUSS LAW Recommended Problems:

Optimization Programming Problems For Control And Management Of Bacterial Disease With Two Stage Growth/Spread Among Plants

Equilibrium of Stress

Finite Automata. Human-aware Robo.cs. 2017/08/22 Chapter 1.1 in Sipser

An Introduction to Complex Numbers - A Complex Solution to a Simple Problem ( If i didn t exist, it would be necessary invent me.

Subject description processes

Kinematic transformation of mechanical behavior Neville Hogan

Math Foundations 10 Work Plan

THE LIFE OF AN OBJECT IT SYSTEMS

(Communicated at the meeting of September 25, 1948.) Izl=6 Izl=6 Izl=6 ~=I. max log lv'i (z)1 = log M;.

The Equation αsin x+ βcos family of Heron Cyclic Quadrilaterals

Sequential Allocation with Minimal Switching

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

Strategy and Game Theory: Practice Exercises with Answers, Errata in First Edition, Prepared on December 13 th 2016

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem

What is Statistical Learning?

On Boussinesq's problem

Pressure And Entropy Variations Across The Weak Shock Wave Due To Viscosity Effects

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving.

Principal Components

Lab #3: Pendulum Period and Proportionalities

Lyapunov Stability Stability of Equilibrium Points

Dead-beat controller design

We can see from the graph above that the intersection is, i.e., [ ).

On small defining sets for some SBIBD(4t - 1, 2t - 1, t - 1)

0606 ADDITIONAL MATHEMATICS

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart

NOTE ON APPELL POLYNOMIALS

You need to be able to define the following terms and answer basic questions about them:

A crash course in Galois theory

ROUNDING ERRORS IN BEAM-TRACKING CALCULATIONS

Transcription:

Philips J. Res. 39, 293-304,1984 R 1097 SOME CONSTRUCTIONS OF OPTIMAL BINARY LINEAR UNEQUAL ERROR PROTECTION CODES by W. J. VAN OILS Philips Research Labratries, 5600 JA Eindhven, The Netherlands Abstract This paper describes a number f cnstructins f binary Linear Unequal Errr Prteetin (LUEP) cdes. The separatin vectrs f the cnstructed cdes include thse f all ptimal binary LUEP cdes f length less than r equal t 15. AMS: 94BOS, 94B60. 1. Intrduetin Cnsider a binary linear cde C f length n and dimensin k with generatr matrix G t be used n a binary symmetric channel. In many applicatins it is necessary t prvide different prteetin levels fr different cmpnents mi f the input message wrd m. Fr example in transmitting numerical (binary) data, errrs in the mre significant bits are mre serius than are errrs in the less significant bits, and therefre mre significant bits shuld have mre prtectin than less significant bits. A suitable measure fr these prteetin levels fr separate psitins in input message wrds is the separatin vectr 1). Definitin Fr a binary linear [n,k] cde C the separatin vectr s(g) = (s(gh, s(gh,..., s(g)k) with respect t a generatr matrix G f C is defined by S(G)i:= min (wt(m G)I m E (0, IJk, mi = IJ, where wt(.) dentes the Hamming weight functin. This separatin vectr s(g) guarantees the crrect interpretatin f the i th message bit whenever Nearest Neighbur Decding (ref. 2 p. 1) is applied and n mre than (S(G)i - 1)/2 errrs have ccurred in the transmitted cdewrd 1). A linear cde that has a generatr matrix G such that the cmpnents f the crrespnding separatin vectr s(g) are nt mutually equal is called a Linear Phillps Jurnl f Research Vl. 39 N.6 1984 293

W. J. van Oils Unequal Errr Prteetin (LUEP) cde 1). By permuting the rws f a genneratr matrix 0 we may btain a generatr matrix GJ' fr the cde such that s(0 ') is nnincreasing, i.e. s(0 ');~ s(0 ');+1 fr i = 1,2,..., k - 1. In this paper we always assume that the rws in generatr matrices are s rdered that the crrespnding separatin vectrs are nnincreasing. Any LUEP cde C has a s-called ptimal generatr matrix 0*. This means that the separatin vectr s(o*) is cmpnentwise larger than r equal t the separatin vectr s(o) f any generatr matrix 0 f Cl), dented by s(o*) ~ s(o) (x ~ y means x; ~ y; fr all i). The vectr s = s(o*) is called the separatin vectr f the linear cde C. We use the ntatin [n,k,s] fr C. Fr any keln and seink we define n(s) t be the length f the shrtest binary linear cde f dimensin k with a separatin vectr f at least s, and nex(s) t be the length f the shrtest binary linear cde f dimensin k with separatin vectr (exactly) S3,4). An [n(s),k,s] cde is called length-ptimal"). It is called ptimal if an [n(s),k,t] cde with t ~ s, t =F s des nt exist ê'). In refs 3 and 4 a number f bunds fr the functins n(s) and nex(s) are derived. In ref. 5 methds fr cnstructing LUEP cdes frm shrt her cdes are described. In refs 3 and 4 an incmplete list f the separatin vectrs f the ptimal binary LUEP cdes f length less than r equal t 15 is given. In this paper we prvide the cmplete list f the separatin vectrs f all ptimal binary LUEP cdes f length less than r equal t 15, tgether with examples f generatr matrices having these separatin vectrs. Furthermre, we give a number f cnstructins f infinite series ptimal binary LUEP cdes. 2. Cnstructins Table I prvides the separatin vectrs f all ptimal binary LUEP cdes f length less than r equal t 15.In this table, n dentes the length f the cde, k dentes the dimensin, and d(n, k) dentes the maximal minimum distance f a binary cde f length n and dimensin k. The brackets and cmmas cmmnly appearing in separatin vectrs have been deleted. Only in the cases where a cmpnent f a separatin vectr is larger than 9, it is fllwed by a pint (.). Examples f cdes having the parameters given in table I are cnstructed belw. The bunds in ref. 4 can be used t shw that certain LUEP cdes are ptimal. They are als useful in shwing that table I is cmplete. In cases where these bunds did nt wrk, methds f exhaustive search were used t shw that cdes with certain parameters d nt exist. Table I is the same table as table I in ref. 4, extended by the parameters [14,10,(4333322222)], [15,3,(994)], [15,8,(73333333)], [15,8,(55554443)], [15,8,(55544444)] and [15,11,(43333222222)].In (ref. 4 table I) n references t cnstructins were given, which has been dne in this paper. 294 Phllips Jurnalf Research Vl.39 N. 6 1984

Sme cnstructins f ptimal binary linear unequal errr prtectin cdes TABLE The separatin vectr f all binary ptimal LUEP cdes f length less than r equal t 15. n k d(n,k) separatin vectr 4 2 2 A 32 5 2 3 A 42 5 3 2 A 322 6 2 4 A 52 6 3 3 A 422 6 4 2 A 3222 7 2 4 A 62,154 7 3 4 A 522 7 4 3 A 4222 7 5 2 A 32222 8 2 5 A 72,164 8 3 4 A 622, C 544.8 4 4 A 5222 8 5 2 A 42222, J 33332 8 6 2 A 322222 9 2 6 A 82,174 9 3 4 A 722, C 644, G 554 9 4 4 A 6222, C 5444 9 5 3 A 52222, J 44442, B 43333 9 6 2 A 422222, J 333322 9 7 2 A 3222222 10 2 6 A 92,184, 176 10 3 5 A 822, C 744, L 664 10 4 4 A 7222, C 6444, G 5544 10 5 4 A 62222, C 54444 10 6 3 A 522222, J 444422, J 433332 10 7 2 A 4222222, J 3333222 10 8 2 A 32222222 11 2 7 A 10.2, 194, 186 11 3 6 A 922, C 844, x. 764 11 4 5 A 8222, C 7444, E 6644 11 5 4 A 72222, C 64444, G 55444 11 6 4 A 622222, J 544442, B 533333 11 7 3 A 5222222, J 4444222, J 4333322 11 8 2 A 42222222, J 33332222 11 9 2 A 322222222 12 2 8 A 11.2, 110.4, 196 12 3 6 A 10.22, C 944, E 864, K2 774, te, 766 12 4 6 A 9222, C 8444, s, 7644 12 5 4 A 82222, C 74444, E 66444, M 55554 12 6 4 A 722222, C 644444, G 554444 12 7 4 A 6222222, J 5444422, J 5333332 I Phllips Jurnlf Research Vl. 39 N. 6 1984 295

W. J. van Oils n k d(n,k) separatin vectr TABLE I (cnt.) 12' 8 3 A 52222222, J 44442222, J 43333222 12 9 2 A 422222222, J 333322222 12 10 2 A 3222222222 13 2 8 A 12.2,111.4, 110.6, 198 13 3 7 A 11.22, C 10.44, «, 964, E 884, L 866 13 4 6 A 10.222, C 9444, L 8644, F 7744, x, 7666 13 5 5 A 92222, C 84444, x, 76444, L 66664, H 66555 13 6 4 A 822222, C 744444, D 664444, M 555544 13 7 4 A 7222222, J 6444442, B 6333333, J 5544442, x, 5444444 13 8 4 A 62222222, J 54444222, J 53333322 13 9 3 A 522222222, J 444422222, J 433332222 13 10 2 A 4222222222, J 3333222222, 13 11 2 A 32222222222 14 2 9 A 13.2, 112.4,111.6, I 10.8 14 3 8 A 12.22, C 11.44, L 10.64, s, 984, x, 966 14 4 7 A 11.222, C 10.444, KI 9644, L 8844, L 8666 14 5 6 A 10.2222, C 94444, L 86444, F 77444, N 76666 14 6 5 A 922222, C 844444, E 764444, L 666644, J 665552 14 7 4 A 8222222, C 7444444, J 6644442, Q 6544444, M 5555444 14 8 4 A 72222222, J 64444422, J 63333332, J 55444422, K l 54444444 14 9 4 A 622222222, J 544442222, J 533333222 14 10 3 A 5222222222, J 4444222222, J 4333322222 14 11 2 A 42222222222, J 33332222222 14 12 2 A 322222222222 15 2 10 A 14.2, 113.4, 112.6,111.8 15 3 8 A 13.22, C 12.44, te, 11.64, x, 10.84, L 10.66, K2 994, «, 988 15 4 8 A 12.222, C 11.444, L 10.644, x, 9844, x, 9666 15 5 7 A 11.2222, C 10.4444, x, 96444, L 88444, L 86666 15 6 6 A 10.22222, C 944444, L 864444, I_<2 774444, J 766662, «, 766644, 0 765554 15 7 5 A 9222222, C 8444444, P 7644444, L 6666444, J 6655522 15 8 4 A 82222222, J 74444442, B 73333333, J 66444422, J 65444442, L 64444444, R 55554443, S 55544444 15 9 4 A 722222222, J 644444222, J 633333322, J 554444222, s, 544444444 15 10 4 A 6222222222, J 5444422222, J 5333332222 15 11 3 A 52222222222, J 44442222222, J 43333222222 15 12 2 A 422222222222, :J 333322222222 15 13 2 A 3222222222222 296 Philips Jurnalf Research Vl.39 N. 6 1984

Sme cnstructins f ptimal binary linear unequal errr prtectin cdes In this paper we frequently use tw results f ref. 4. Hence we repeat these results in the fllwing tw therems. Therem 1 (ref. 4,.therem 12) Fr any k e IN and nnincreasing se INk we have that hlds fr any ie {I,..., kj, where A _ {Sj - ls)2j fr j < i SJ.- rsj/21 fr i> i, (where l=l dentes the largest integer smaller than r equal t x, and [x] dentes the smallest integer larger than r equal t x). Therem 2 (ref. 4, crllary 14) Fr any kein and any nnincreasing sein\ fllwing inequalities, a. n(sl S2,..., Sk) ~ SI + n(fs2/21,..., rsk/2l), k b. n(sl S2,..., Sk) ~ L rs;/2 i - 1 l- i=1 the functin n(s) satisfies the Cnstructin A Fr n,kein, n ~ k + 1, the k by n matrix 11111... 111 (I 0,_"._,_, (1) is a generatr matrix f an ptimal binary [n,k,(n - k + 1,2,2,...,2)] cde (h dentes the identity matrix f rder k,ok-l,n-k-l dentes the all-zer k - 1. by n - k -1 matrix). Prf It is easy t check that the parameters f the cde are crrect. Furthermre by therem 2b the length f a k-dimensinal binary cde with separatin vectr (n - k + 1,2,2,...,2) is at least n, and with separatin vectr larger than (n - k + 1,2,2,...,2) is at least n + 1.(by s» t (s larger than t) we mean s ~ t, s =1= t). Phillps Jurnal f Research Vl. 39 N.6 1984 297

W. J. van Oils Cnstructin B Fr kein, k~ 4, the k by 2k - 1 matrix 00... 0 11.... 1 0 h-l 1 (2) is a generatr matrix f an ptimal binary [2k - l,k,(k - 1,3,3,...,3)] cde. Prf It is easy t verify that the parameters f the cde are crrect. By therem 2b, we have that the length f a k-dimensinal binary cde with separatin vectr (k - 1,3, 3,..., 3) is at least 2k - 1. Applicatin f therem 2b t a k-vectr S with SI~ k and Si ~ 3 fr i = 2,..., k shws that n(s) ~ 2k. Applicatin f the therems 1 and 2 t a k-vectr s such that SI = k - 1, S2 ~ 4, Si ~ 3 fr i = 3,..., k - 1, and Sk = 3 shws that nex(s) ~ 3 + nts, - 1,..., Sk-l - 1) ~ 3 + SI - 1 + n(f(s2-1)/21,..., r(sk-l - 1)/21) ~ 3 + k - 2 + n(2, 1, 1,..., 1) k-2 ~ 3 + k - 2 + k - 1 = 2k. Furthermre it is nt difficult t check that a binary [2k - 1, k, (k - 1,4,4,...,4)] cde des nt exist. Finally, by therem 2b the length f a k-dimensinal binary cde with a separatin vectr f at least (k - 1, 5,4,4,...,4) is at least 2k. These bservatins shw that the cde in cnstructin B is ptimal. Cnstructin C Fr n,ke IN, n ~ max{2k,k 1 + 4}, the k by n matrix 00... 0 11.... 1 11... 1 10 h-l 11 11 (3) 11 is a generatr matrix f an ptimal binary [n,k,(n - k, 4, 4,...,4)] cde. 298 Phillps Jurnalf Research Vl.39 N.6 1984

Sme cnstructins f ptimal binary linear unequal errr prtectin cdes Prf Similar t the prf f cnstructin A. Cnstructin D Fr p, q e IN, p ~ q ~ 2, the p + q + 2 by 2p + 3q + 3 matrix q-l +-----+ 00... 0 1110 11...1 00... 0 11..1 00... 0 1101 00...0 11...1 11..1 i-,. 0101 0101 lp 0 0 0101 1010 1010 0 t, 0 1010. (4) is a generatr matrix f an ptimal binary [2p + 3q + 3,p + q + 2,(p + q + 2, 2q + 2,4,4,...,4)] cde. Prf Similar t the prf f cnstructin A. Cnstructin E Fr p,q,rein, p~3, r~2, q~r-p+2, the p by (2p+q+2r-4) matrix 11.. 1 00 0 11...1 00... 0 11..1 00 0 00 0 11...1 11...1 00..0 1 Ip-2 Ip-2 1 (5) 1 +---+ ~ +---+ r r q is a generatr matrix f an ptimal binary [2p + q + 2r - 4,p,(p + q + r - 2, 2r, 4, 4,...,4)] cde. Phllips Jumal f Research Vl. 39 N.6 1984 299

W. J. van Gils Prf Similar t the prf f cnstructin A. Cnstructin F Fr p,qeln, p~ 3, 2, «>» - 2, thep by p + 3q matrix 00... 0 11..... 1 11...1 00... 0 11.... 1 00... 0 11..... 1 00... 0 11...1 11.... 1 1 1 Ip-2 Ip-2 1 0 1 0 0 : 1 1 (6) q + 1 q + 1 q - (p -2) is a generatr matrix f an ptimal binary [p + 3q,p,(2q + 1, 2q +.1,4,4,...,4)] cde. Prf Similar t the prf f cnstructin A. Cnstructin G Fr peln, the 2p by 4p matrix 00... 0 1110 11..1 00.. 0 00... 0 1 1 0 1 00..0 11..1 1010... 0 Ip-1... 12p-2 1010 0101... Ip-1 0... 0101 (7) is a generatr matrix f a binary [4p,2p,(p + 2,p + 2,4,4,...,4)] cde. Fr p = 2, 3 the cdes are ptimal, but in general they are nt. In ref. 6 the cdes frm cnstructin G are treated extensively, the weight enumeratrs and autmrphism grups are determined cmpletely and a majrity lgic decding methd fr these cdes is given. Fr p = 3 we btain a [12,6,(5,5,4,4,4,4)] ptimal LUEP cde. By deleting the rw and clumn pairs (6,4), (5,3) and (4,2) successively we btain [11,5,(5,5,4,4,4)], [10,4,(5,5,4,4)] and [9,3,(5,5,4)] ptimal LUEP cdes respectively. 300 Phllips Jurnalf Research Vl.39 N. 6 1984

Sme cnstructins f ptimal binary linear unequal errr prtectin cdes Cnstructin H Fr pein,»» 3, the (p + 2) by (4p + 1) matrix 00 0 11...1 11...1 00... 0 0 00 0 11...1 00...0 11...1 0-1 (8) is a generatr matrix f a length-ptimal LUEP cde. binary [4p + l,p + 2,(2p,2p,5,5,..., 5)] Prf It is easy t check that the cde has the given parameters. By therem 2b the length f a (p + 2)-dimensinal binary cde with separatin vectr (2p,2p,5,5,...,5) is at least 4p + 1. Fr p = 3 this cnstructin gives a [13,5,(6,6,5,5,5)] ptimal LUEP cde. Furthermre table I refers t the fllwing trivial cnstructins. 1 Cnstructin I Fr p,qein, p > q, the 2 by (p + 2q) matrix 11.. 1 00... 0 11...lj 00 0 11...1 11...1 [ ~ +-----+ p q q (9) is a generatr matrix f an ptimal binary [p + 2q,2,(p + q,2q)] LUEP cde. Cnstructin J If the matrix Ol has separatin vectr S(Ol) such that s(olh -;;::. 2, then the matrix has separatin vectr S(02) = (s(01),2). Ol 1 100000 0 (10) Philips Jurnalf Research Vl. 39 N. 6 1984 301

W. J. van Gils Cnstructin Ki If the matrix Gl has separatin vectr S(Gl) then the matrix G2 ;= [ Gl lei]' (11) where ei is the vectr with a 1 n the i th psitin and zers elsewhere, has separatin vectr S(G2) = s(gl) + ei.. The fllwing therem can be used t determine whether cnstructin K, gives an ptimal cde.. Therem 3 If s is such that fr all t ~ s, t =1= s, it hlds that net) > nes) and if G is a generatr matrix f a binary ptimal [r + n(s),k,(r,2s)] cde, then the cde generated by [G I ell ell... 1 el] is a binary ptimal [r + t + n(s),k,(r + t,2s)] +--t----+ cde fr t in IN arbitrary. Prf Let sand that G fulfill the cnditins mentined abve. By therem 2a we have a) n(r + t,2s) ~ r + t + n(s). b) n(r + t + 1,2s) ~ r + t + 1 + nes) > r + t + nes). c) n(r+ t,2s + u) ~ r+ t + nasl + ud21,...,[sk-l + uk-d2l) ~ r+ t + 1 + nes) fr u ~ 0, u =1=. Cmbinatin fa), b) and c) shws that the cdegenerated by [G I ell ell.. 1 el] is ptimal. +--t----+ Cnstructin L Adding an verall parity-check bit t a binary [n,k,s = (SI,..., Sk)] cde gives a binary [n + 1,k,s' = (2l(Sl + 1)/2J,..., 2l(Sk + 1)/2J)] cde. Spradic cnstructins referred t in table I are the fllwing. Cnstructin M The 7 by 14 matrix 00011111000000 00011000111000. 00010100100101 00001010010011 00110001100000 01001010001000 10000000000111 (12) 302 Philip, Jurnalf Research Vl.39 N. 6 1984

! Sme cnstructins f ptimal binary linear unequal errr prtectin cdes is a generatr matrix f an ptimal binary [14,7,(5,5,5,5,4,4,4)] LUEP cde. Deleting the first clumn and the last rw frm the matrix in (12) gives an ptimal binary [13,6,(5,5,5,5,4,4)] cde. Deleting the first tw clumns and the last tw rws frm the matrix in (12) gives an ptimal binary [12,5,(5,5,5,5,4)] LUEP cde. Cnstructin N Applicatin f [5,cnstructin 1] with m = 1, q = 2 and G1 a generatr matrix f the [7,4,(3,3,3,3)] Hamming cde gives an ptimal binary [14,5,(7,6,6,6,6)] LUEP cde. Cnstructin 0 The 6 by 15 matrix 000011111000111 000000000111111 100011000100100 010010100010010 001010010001001 000100001001001 (13) is a generatr matrix f an ptimal binary [15,6,(7,6,5,5,5,4)] LUEP cde. Cnstructin P The 7 by 15 matrix 000001111111000 000001110000111 100001001000100 010001001000010 001000100100001 000100100010001 000010100001001 (14) is a generatr matrix f an ptimal binary [15,7,(7,6,4,4,4,4,4)] Cnstructin Q By deleting the 8 th clumn frm the matrix in (14) we btain LUEP cde. a generatr matrix f an ptimal binary [14,7,(6,5,4,4,4,4,4)] cde. I Cnstructin R. The 8 by 15.matrix Philips Jurnalf Research Vl.39 N. 6 1984 303

W. J..van Gils 1 00000100010000 G (15) where G is the matrix in (12), is a generatr [15,8,(5,5,5,5,4.,4,4,3)] LUEP cde. matrix f an ptimal binary Cnstructin S The 8 by 15 matrix 1000000011 00 110 010000001010101 001000001001111 000100000110100 000010001110000 000001001101000 000000101011 000 000000010111000 (16) is a generatr matrix f an ptimal binary [15,8,(5,5,5,4,4,4,4,4)] LUEP cde. REFERENCES 1) L. A. Dunning and W. E. Rbbins, Infrm. Cntr. 37,150 (1978). 2) F. J. MacWilliams and N. J. A. Slane, The thery f errr-crrecting cdes, Nrth- Hlland Mathematical Library, Amsterdam, Vl. 16, 1978. 3) W. J. van Gils, EUT-Rep. 82-WSK-02, Department f Mathematics and Cmputing Science, Eindhven University f Technlgy, Eindhven, The Netherlands, June 1982. 4) W. J. van Gils, IEEE Trans. Infrm. Thery IT-29, 866 (1983). 6) W. J. van Gils, IEEE Trans. Infrm. Thery IT-30, 544 (1984). 6) L. M. H. E. Driessen, IEEE Trans. Infrm. Thery IT-30, 392 (1984). 304 Phllips JurnnI f Research Vl.39 N. 6 1984