Chapter 7 Duopoly. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction

Similar documents
Oligopoly Notes. Simona Montagnana

Market Power. Economics II: Microeconomics. December Aslanyan (VŠE) Oligopoly 12/09 1 / 39

Bertrand Model of Price Competition. Advanced Microeconomic Theory 1

Advanced Microeconomics

Oligopoly. Molly W. Dahl Georgetown University Econ 101 Spring 2009

Chapter 4 AD AS. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction

4. Partial Equilibrium under Imperfect Competition

Answer Key: Problem Set 3

Oligopoly Theory. This might be revision in parts, but (if so) it is good stu to be reminded of...

Basics of Game Theory

On revealed preferences in oligopoly games

EconS Oligopoly - Part 2

GS/ECON 5010 Answers to Assignment 3 W2005

Trade policy III: Export subsidies

Wireless Network Pricing Chapter 6: Oligopoly Pricing

Oligopoly. Oligopoly. Xiang Sun. Wuhan University. March 23 April 6, /149

Nonlinear dynamics in a duopoly with price competition and vertical differentiation

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Lecture #11: Introduction to the New Empirical Industrial Organization (NEIO) -

Chapter 10 Skill biased technological change

y = F (x) = x n + c dy/dx = F`(x) = f(x) = n x n-1 Given the derivative f(x), what is F(x)? (Integral, Anti-derivative or the Primitive function).

Classic Oligopoly Models: Bertrand and Cournot

THEORY OF OLIGOPOLIES: DYNAMICS AND STABILITY OF EQUILIBRIA

Direct methods for symmetric eigenvalue problems

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Static Models of Oligopoly

Stability analysis of the oligopoly problem and variations

EconS Sequential Competition

ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION

Definition (T -invariant subspace) Example. Example

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016

1 Oligopoly: Bertrand Model

Iterative methods for symmetric eigenvalue problems

Econ 101A Problem Set 6 Solutions Due on Monday Dec. 9. No late Problem Sets accepted, sorry!

DISCRETE-TIME DYNAMICS OF AN

Asymptotic relations in Cournot s game

A Stackelberg Game Model of Dynamic Duopolistic Competition with Sticky Prices. Abstract

Managerial delegation in multimarket oligopoly

Answer Key for M. A. Economics Entrance Examination 2017 (Main version)

Price and Quantity Competition in Dynamic Oligopolies with Product Differentiation

Industrial Organization

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

Some forgotten equilibria of the Bertrand duopoly!?

Backwards Induction. Extensive-Form Representation. Backwards Induction (cont ) The player 2 s optimization problem in the second stage

Chapter 9 Solow. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction

Study Guide for Linear Algebra Exam 2

Optimization Techniques

Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples

4: Dynamic games. Concordia February 6, 2017

Econ Slides from Lecture 7

October 16, 2018 Notes on Cournot. 1. Teaching Cournot Equilibrium

TMA Calculus 3. Lecture 21, April 3. Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013

Advanced Mathematics for Economics, course Juan Pablo Rincón Zapatero

EXAMINATION #4 ANSWER KEY. I. Multiple choice (1)a. (2)e. (3)b. (4)b. (5)d. (6)c. (7)b. (8)b. (9)c. (10)b. (11)b.

Are Targets for Renewable Portfolio Standards Too Low? A Complementarity-Based Policy Analysis

EC3224 Autumn Lecture #03 Applications of Nash Equilibrium

Chapter 12 Ramsey Cass Koopmans model

Industrial Organization Lecture 7: Product Differentiation

CHAPTER 5 REVIEW. c 1. c 2 can be considered as the coordinates of v

Citation for published version (APA): Kopányi, D. (2015). Bounded rationality and learning in market competition Amsterdam: Tinbergen Institute

Lecture 2F: Hotelling s Model

4. CONTINUOUS VARIABLES AND ECONOMIC APPLICATIONS

3. Partial Equilibrium under Imperfect Competition Competitive Equilibrium

6.254 : Game Theory with Engineering Applications Lecture 7: Supermodular Games

Research Article Chaos Control on a Duopoly Game with Homogeneous Strategy

Design Patent Damages under Sequential Innovation

Revealed Preference Tests of the Cournot Model

Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October

Growing competition in electricity industry and the power source structure

Welfare consequence of asymmetric regulation in a mixed Bertrand duopoly

Supermodular Games. Ichiro Obara. February 6, 2012 UCLA. Obara (UCLA) Supermodular Games February 6, / 21

Nonlinear Phenomena in Cournot Duopoly Model

Computational Methods. Eigenvalues and Singular Values

Own price influences in a Stackelberg leadership with demand uncertainty

Low-Quality Leadership in a Vertically Differentiated Duopoly with Cournot Competition

Overview. Producer Theory. Consumer Theory. Exchange

MAT1300 Final Review. Pieter Hofstra. December 4, 2009

Deceptive Advertising with Rational Buyers

Matrices 2. Slide for MA1203 Business Mathematics II Week 4

Properties of Linear Transformations from R n to R m

Cournot and Bertrand Competition in a Differentiated Duopoly with Endogenous Technology Adoption *

Product differences and prices

Nonlinear dynamics in the Cournot duopoly game with heterogeneous players

Chapter 4 Differentiation

Worst Welfare under Supply Function Competition with Sequential Contracting in a Vertical Relationship

Recall : Eigenvalues and Eigenvectors

Symmetric and anti symmetric matrices

2 Functions and Their

Quantity-setting games with a dominant

Powered by TCPDF (

No Information Sharing in Oligopoly: The Case of Price Competition with Cost Uncertainty

Dynamic stochastic game and macroeconomic equilibrium

Second Order Derivatives. Background to Topic 6 Maximisation and Minimisation

What s Eigenanalysis? Matrix eigenanalysis is a computational theory for the matrix equation

Volume 29, Issue 3. Strategic delegation and market competitiveness

Functions. A function is a rule that gives exactly one output number to each input number.

Cournot Competition Under Asymmetric Information

Durable goods monopolist

Research Article Complexity Analysis of a Cournot-Bertrand Duopoly Game Model with Limited Information

Empirical Industrial Organization (ECO 310) University of Toronto. Department of Economics Fall Instructor: Victor Aguirregabiria

Transcription:

Chapter 7 Duopoly O. Afonso, P. B. Vasconcelos Computational Economics: a concise introduction O. Afonso, P. B. Vasconcelos Computational Economics 1 / 21

Overview 1 Introduction 2 Economic model 3 Numerical solution 4 Computational implementation 5 Numerical results and simulation 6 Highlights 7 Main references O. Afonso, P. B. Vasconcelos Computational Economics 2 / 21

Introduction Oligopoly markets consist of a small number of firms that dominate the market, selling differentiated or homogenous products. There are different ways of modelling oligopolies, depending on the way firms interact in the market. Firms choose quantity and then price adjusts so that demand equals supply these are the Cournot and Stackelberg models. Firms choose the prices and then consumers choose from which firm to buy this is the Bertrand model. To understand the Nash equilibrium the focus is on the duopoly case, in which the market has only two firms. The economic problem is based on Gandolfo (2010), Perloff (2013) and Varian (1992), while the mathematical and computational support is based on Demmel (1997) and Bai et al. (2000). O. Afonso, P. B. Vasconcelos Computational Economics 3 / 21

Economic model Cournot, Stackelberg and Bertrand models of duopoly markets Consider a static case with two firms, duopoly, each with a marginal cost MC and with total (inverse) demand P = 1 ( ) Q d (Q 1 + Q 2 ), a where P is the price, Q d is the autonomous demand, a > 0 is the sensitivity of the demand to price and Q i is the quantity offered by firm i, i = 1, 2. The total revenue, TR i, is TR i (Q 1, Q 2 ) = P Q i = 1 ( ) Q d (Q 1 + Q 2 ) Q i, a and thus the marginal revenue, MR i, is MR i (Q 1, Q 2 ) = 1 ( ) Q d (Q 1 + Q 2 + Q i ). a Then, firm i maximises profits by setting marginal revenue equal to marginal cost, MR i = MC. O. Afonso, P. B. Vasconcelos Computational Economics 4 / 21

Economic model Cournot The Cournot equilibrium (P, Q ), Q = Q1 + Q 2 is computed as follows: 1 The best response of firm 1 to firm 2 s decisions should be obtained; from MR 1 = MC and given Q 2, it results Q1 (Q 2) = 1 2 (Q d amc) 1 2 Q 2. 2 The best response of firm 2 to firm 1 s decision is computed; similarly, to firm 2, it results Q 2 (Q 1) = 1 2 (Q d amc) 1 2 Q 1. 3 The Cournot equilibrium occurs when Q1 is replaced in Q 2 (and vice versa): Q1 = Q 2 = 1 3 (Q d amc). O. Afonso, P. B. Vasconcelos Computational Economics 5 / 21

Economic model Stackelberg To compute the Stackelberg equilibrium (P, Q ), suppose that firm 1 is the leader (it decides first) and firm 2 is the follower; the sequential mechanism is as follows: 1 Similar to step 2 in Cournot, the best response of firm 2 to leader firm 1 decision is computed; Q 2 (Q 1) = 1 2 (Q d amc) 1 2 Q 1. 2 Firm 1 s total revenue, given firm 2 s best response, is obtained: 1 TR 1 (Q 1, Q 2 ) = 1 2 (Q d + amc) 1 2 Q 1, 2 MR 1 (Q 1, Q 2 ) = Q 1 /a + (Q d + amc)/(2a), 3 from MR 1 = MC, Q 1 = 1 2 (Q d amc). 3 Finally, given firm 1 s optimal decision, Q2 is obtained using firm 2 s best response function Q2 (Q 1 ) = 1 4 (Q d amc). The firm leader produces more in the Stackelberg equilibrium than the follower due to the first-mover advantage. O. Afonso, P. B. Vasconcelos Computational Economics 6 / 21

Economic model Bertrand Firms compete by setting prices and thus the (Nash) equilibrium is such that the prices are equal to the marginal costs: P1 = MC and P 2 = MC. Prices different from P1 and P 2 cannot be an equilibrium. 1 P < MC: at least one firm will earn negative profits and thus the firms have an incentive to deviate. 2 MC = P 1 < P 2 : firm 1 can deviate by setting prices so that MC < P 1 < P 2 and make higher profits; at this new price P 1, firm 1 does not lose any customers, but is selling at a higher price. 3 MC < P 1 < P 2 : firm 1 has an incentive to deviate by setting P 1 < P 1 < P 2, so that it does not lose any customers, but sells at a higher price. moreover, firm 2 can also deviate by setting MC < P 2 < P 1 in order to grab the whole market and sells at a price above the marginal cost. 4 MC < P 1 = P 2 : firm 1, for example, has an incentive to deviate by setting MC < P 1 < P 1 to capture all the market by charging lower price. O. Afonso, P. B. Vasconcelos Computational Economics 7 / 21

Economic model Discrete dynamics Cournot duopoly game Consider two firms, i = 1, 2, producing a homogeneous good at time t observe the other firm s output and assume that this quantity stays unchanged in the next time period, t + 1; thus, P t = Q d a 1 a Q d,t, where P is the price of the good, Q d > 0 is the independent/autonomous quantity demanded, Q d is the quantity demanded, which is also the quantity produced, Q 1,t + Q 2,t, and a > 0 is the sensitivity of the demand to price. Linear total cost curves TC = TC 1 = TC 2 are considered for each firm, and thus the marginal cost MC is constant. Thus, each firm has an ex-ante market price based on the belief that the other firm s output remains fixed: P i,t+1 = Q d a 1 a (Q i,t+1 + Q j,t ), j i. O. Afonso, P. B. Vasconcelos Computational Economics 8 / 21

Economic model Discrete dynamics Cournot duopoly game Firm i determines Q i,t+1 to maximise its expected profits: π i,t+1 = P i,t+1 Q i,t+1 TC = Q d a Q i,t+1 1 ( ) Q 2 a i,t+1 + Q i,t+1 Q j,t TC. The first-order conditions for an interior maximum are: π i,t+1 = 0 Q i,t+1 = 1 Q i,t+1 2 Q j,t + Q d amc, i, j = 1, 2, i j, 2 which is a nonhomogeneous first-order difference system. In matricial form where A = [ 0 1 2 1 2 0 Q t+1 = AQ t + g (1) ] ] [ ] Q1,t, Q t = and g = Q 2,t [ Qd amc 2 Q d amc 2. O. Afonso, P. B. Vasconcelos Computational Economics 9 / 21

Economic model Discrete dynamics Cournot duopoly game The study of the homogeneous system, Q t+1 = AQ t, provides insight on the convergence of the process. Convergence is ruled by the eigenvalues of A, which is equivalent to obtain the roots of the characteristic equation det(a λi) = 0. For the present case λ 1, λ 2 = ± 1 2, and hence, the movement is convergent towards the equilibrium solution: Q1 = Q 2 = (Q d MC)/(3a). O. Afonso, P. B. Vasconcelos Computational Economics 10 / 21

Numerical solution System of difference equations Consider a first order 2 2 system Y t+1 = AY t + g(t) where Y t = [y 1,t, y 2,t ] T, A is a 2 2 (transition) matrix of constants and g(t) = [g 1 (t), y 2 (t)] T. To access the convergence characteristics of the solution, the focus is on the homogeneous [ part, g] 1 (t) = g 2 (t) = 0. k1 Suppose Y t = λ k t with k 1 and k 2 constants is a solution; then for λ 0, 2 [ ] k1 (A λi) = 0, k 2 leading to the characteristic equation λ 2 trace(a) + det(a) = 0; its roots, λ 1 and λ 2, are the eigenvalues of matrix A. The generalisation for n n systems is immediate although the presence of more than two eigenvalues can lead to more complex behaviour over time. Depending on the eigenvalues, different types of solution results, and thus different stability conditions. In particular, the system is convergent if and only if all eigenvalues have absolute value less than 1. O. Afonso, P. B. Vasconcelos Computational Economics 11 / 21

Eigenvalue problem Numerical solution An eigenvalue problem consists in computing solutions, scalars λ and nonzero x, of the matrix equation Eigenvalue problem Ax = λx (2) where A is n n, the scalar λ is an eigenvalue, x 0 is the corresponding (right) eigenvector and (λ, x) is an eigenpair. The set of all eigenvalues of A is called the spectrum of A. Eigenvectors are invariant directions under multiplication by A. Eigenvalues can be interpreted as the n roots of the characteristic polynomial p(λ) = det(a λi), and a particular λ i as the representation of A in the subspace spanned by the correspoof dimension ding x i, i = 1,..., n. Real matrices can have complex eigenvalues, which occur in conjugate pairs. O. Afonso, P. B. Vasconcelos Computational Economics 12 / 21

Numerical solution Eigenvalue computations in practice Numerical algorithms for computing eigenvalues can be divided into: transformation methods, which, first, reduce the original matrix A to a form from which the eigenvalues can be computed; iterative methods, which, first, reduce matrix A into one of much smaller order and then use techniques to extract the eigenpairs from the smaller subspace where the problem was projected. While the former are suited for small dimension matrices and compute all eigenpairs, the latter are adequate to large dimensional problems and compute a subset of the spectrum. MATLAB/Octave: Compute all eigenpairs of a small/moderate size matrix A: [V,D]=eig(A), where D is a diagonal matrix of eigenvalues and V a matrix whose columns are the respective eigenvectors. Compute all a subset of eigenpairs from a large sparse matrix A: [V,D] = eigs(a). O. Afonso, P. B. Vasconcelos Computational Economics 13 / 21

Computational implementation The following baseline values are considered: Q d = 1000, a = 10 and MC = 10. O. Afonso, P. B. Vasconcelos Computational Economics 14 / 21

Computational implementation Presentation and parameters %% D i s c r e t e dynamic Cournot duopoly game % Implemented by : P. B. Vasconcelos and O. Afonso clear ; clc ; disp ( ) ; disp ( D i s c r e t e dynamic Cournot duopoly game ) ; disp ( ) ; %% parameters a = 10; % s e n s i t i v i t y of the demand to p r i c e MC_bar = 10; % marginal cost common to both f i r m s %% exogenous v a r i a b l e s Qd_bar = 1000; % independent / autonomous q u a n t i t y demanded %% model A = [0 0.5; 0.5 0 ] ; g = [ ( Qd_bar a MC_bar ) / 2 ; ( Qd_bar a MC_bar ) / 2 ] ; f p r i n t f ( Qt+1 = AQt + g \ n ) disp ( A = ), disp (A) ; disp ( g = ), disp ( g ) ; O. Afonso, P. B. Vasconcelos Computational Economics 15 / 21

Computational implementation Solution %% compute the endogenous v a r i a b l e s tmax = 100; t o l = 1e 4; % maximum nb of periods t = 1; Q( :, t ) = [ 2 5 ; 2 5 ] ; disp ( t Q1, t Q2, t ) f p r i n t f ( %d \ t %5.2 f %5.2 f \ n, t 1,Q( 1, t ),Q( 2, t ) ) t = 2; Q( :, t ) = A Q( :, t 1)+g ; f p r i n t f ( %d \ t %5.2 f %5.2 f \ n, t 1,Q( 1, t ),Q( 2, t ) ) while t <tmax && norm(q( :, t ) Q( :, t 1) ) > t o l norm(q( :, t ) ) t = t +1; Q( :, t ) = A Q( :, t 1)+g ; f p r i n t f ( %d \ t %5.2 f %5.2 f \ n, t 1,Q( 1, t ),Q( 2, t ) ) end %% phase diagram c o u r n o t _ p l o t (Q) O. Afonso, P. B. Vasconcelos Computational Economics 16 / 21

Plot the solution Computational implementation function c o u r n o t _ p l o t (Q) % Cournot phase diagram q = Q( 1, : ) ; % f o r Cournot Q1=Q2 xmin = min ( q ) 0. 8 ; xmax = max( q ) 1. 1 ; xx = [ xmin, xmax ] ; plot ( [ 0, xmax ], [ 0, xmax ] ) ; hold on ; for t = 1: length ( q ) 1 plot ( [ q ( t ), q ( t ) ], [ q ( t ), q ( t +1) ], r ) ; plot ( [ q ( t ), q ( t +1) ], [ q ( t +1), q ( t +1) ], r ) ; end xlabel ( Q_{ t } ) ; ylabel ( Q_{ t +1} ) ; x lim ( xx ) ; y lim ( xx ) ; hold o f f end O. Afonso, P. B. Vasconcelos Computational Economics 17 / 21

Numerical results and simulation --------------------------------------------------------- Discrete dynamic Cournot duopoly game --------------------------------------------------------- Qt+1 = AQt + g A = 0-0.5000-0.5000 0 g = 450 450 t Q1,t Q2,t 0 25.00 25.00 1 437.50 437.50 2 231.25 231.25 3 334.38 334.38 4 282.81 282.81 5 308.59 308.59 6 295.70 295.70 7 302.15 302.15 8 298.93 298.93 9 300.54 300.54 10 299.73 299.73 11 300.13 300.13 12 299.93 299.93 13 300.03 300.03 14 299.98 299.98 15 300.01 300.01 O. Afonso, P. B. Vasconcelos Computational Economics 18 / 21

Numerical results and simulation 450 400 350 300 Q t+1 250 200 150 100 50 50 100 150 200 250 300 350 400 450 Q t Quantity phase diagram for the dynamic duopoly Cournot game O. Afonso, P. B. Vasconcelos Computational Economics 19 / 21

Highlights Oligopoly markets are characterised by a small number of firms and the focus was on the duopoly case. The dynamic learning process through which each firm refines its own belief of the market behaviour is explored. Stability of systems of difference linear equations is analysed through the eigenvalues of the matrix that represents the linear autonomous system (with constant coefficients); the duopoly equilibrium for the Cournot game with a linear demand and cost functions is stable. Systems of difference equations are exposed and numerical algorithms to compute eigenvalues are briefly introduced; eigenvalues are fundamental to understanding the convergence of the iterative process. O. Afonso, P. B. Vasconcelos Computational Economics 20 / 21

Main references G. Gandolfo Economic dynamics. Springer, 2010. J. M. Perloff Microeconomics: Theory and Applications with Calculus. Prentice Hall; 3rd edition, 2013. H. R. Varian Microeconomic Analysis. W. W. Norton & Company; 3rd edition, 1992. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van-der-vorst Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM, 2000. J. W. Demmel Applied Numerical Linear Algebra. SIAM, 1997. O. Afonso, P. B. Vasconcelos Computational Economics 21 / 21