Pluging in values for the parameters from table 6.1 we obtain switching resistance,

Similar documents
ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

THE INVERTER. Inverter

Topic 4. The CMOS Inverter

ECE 342 Solid State Devices & Circuits 4. CMOS

EE115C Digital Electronic Circuits Homework #4

EEE 421 VLSI Circuits

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

EE5311- Digital IC Design

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

MOSFET and CMOS Gate. Copy Right by Wentai Liu

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Dynamic operation 20

CMOS Inverter (static view)

EE5311- Digital IC Design

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Lecture 4: DC & Transient Response

ECE321 Electronics I

Lecture 5: DC & Transient Response

ENEE 359a Digital VLSI Design

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

CMOS Logic Gates. University of Connecticut 181

The Physical Structure (NMOS)

EE5780 Advanced VLSI CAD

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Lecture 6: DC & Transient Response

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

EE115C Digital Electronic Circuits Homework #3

Digital Integrated Circuits

EE141Microelettronica. CMOS Logic

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

COMBINATIONAL LOGIC. Combinational Logic

9/18/2008 GMU, ECE 680 Physical VLSI Design

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

Lecture 5: DC & Transient Response

CMOS Logic Gates. University of Connecticut 172

Digital Integrated Circuits A Design Perspective

ECE 546 Lecture 10 MOS Transistors

Design of Analog Integrated Circuits

ECE 342 Electronic Circuits. 3. MOS Transistors

Elad Alon Homework #2 EECS141 Due Thursday, September 9, 5pm, box in 240 Cory

The CMOS Inverter: A First Glance

Properties of CMOS Gates Snapshot

DC & Transient Responses

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

5. CMOS Gate Characteristics CS755

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Integrated Circuits & Systems

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

Lecture 4: CMOS review & Dynamic Logic

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

MOS Transistor Theory

ESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania, updated 12Feb15

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Integrated Circuits & Systems

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Digital Integrated Circuits 2nd Inverter

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Lecture 12 Circuits numériques (II)

EE 434 Lecture 33. Logic Design

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

NTE4501 Integrated Circuit CMOS, Dual 4 Input NAND Gate, 2 Input NOR/OR Gate, 8 Input AND/NAND Gate

ECE251 VLSI System Design Spring Homework 1. Jinfeng Liu

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

Homework Assignment #3 EE 477 Spring 2017 Professor Parker , -.. = 1.8 -, 345 = 0 -

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

VLSI Design Issues. ECE 410, Prof. F. Salem/Prof. A. Mason notes update

DC and Transient Responses (i.e. delay) (some comments on power too!)

MOS Transistor Theory

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

Pass-Transistor Logic

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Circuit A. Circuit B

Digital Integrated Circuits A Design Perspective

COMP 103. Lecture 16. Dynamic Logic

Chapter 11. Inverter. DC AC, Switching. Layout. Sizing PASS GATES (CHPT 10) Other Inverters. Baker Ch. 11 The Inverter. Introduction to VLSI

The CMOS Inverter: A First Glance

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

PASS-TRANSISTOR LOGIC. INEL Fall 2014

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

INTEGRATED CIRCUITS. 74ALS11A Triple 3-Input AND gate. Product specification 1991 Feb 08 IC05 Data Handbook

NTE4514B & NTE4515B Integrated Circuit CMOS, 4 Bit Latch/4 to 16 Line Decoder

Transcription:

Problem 10.1 By Vehid Suljic Using the parameters in Table 6.1 compare the hand-calculated effective digital switching resistance using Eq. (10.6) to the empirically derived values given in table 10.1. Using equation 10.6, Rn = VDD/[0.5 KPn (W/L) (VDD-Vthn) 2 ] Pluging in values for the parameters from table 6.1 we obtain switching resistance, Rn = 4.7K (L/W) However, empirically derived Rn in table 10.1 is Rn = 15K (L/W) which is very different from hand calculated results above. This is due to the mobility (µ, Kpn = µ Cox ) that is not constant with applied voltage (electric field).

Problem 10.5 Indira Priyadarshini. Vemula For the following circuits estimate the delay between the input and the output. Use the 50nm (short channel CMOS)process. Verify the estimates with spice? a) ***PROBLEM 10.5A****.control destroy all run plot vout vin ylimit 0 1.endc.option scale=50n.ic v(vout)=1.tran 10p 500p UIC vin vin 0 dc 0 pulse 0 1 200p 100p M1 vout vin 0 0 NMOS L=1 W=10 C1 vout 0 20f **models included t delay =0.7*R n *C tot =0.7*34K/10*(62.5 af*10+20 Ff) =49.08 ps

b) ***PROBLEM 10.5B****.control destroy all run plot vout vin ylimit 0 1.endc.option scale=50n.tran 10p 4n UIC vdd vdd 0 dc 1 vin vin 0 dc 0 pulse 0 1 100p 100p 100p 1n 2n M1 vout vin n1 0 NMOS L=1 W=10 M2 n1 vdd 0 0 NMOS L=10 W=10 C1 vout 0 20f IC=1 R n =3.4K+3.4K =6.8K t delay =0.7*6.8K*(62.5 Af*10+20 ff) =98.17 ps **models included We are doing this problem using short channel process, but here the length of the MOFET is 10 which cause the resistance to increase. This results in increase in time delay when compared to the calculated value.

C) t delay =0.7*Rp*C tot =0.7*68K/20(62.5 Af*20*20+20 ff) =107.1 ps ***PROBLEM 10.5c****.control destroy all run plot vout vin.endc.option scale=50n.ic v(vout)=0 v(vin)=1.tran 10p 8n UIC vdd vdd 0 dc 1 vin vin 0 dc 0 pulse 1 0 200p 100p M1 vout vin vdd vdd PMOS L=20 W=20 C1 vout 0 20f **models included We are doing this problem using short channel process, but here the length of the MOFET is 20 which cause the resistance to increase. This results in increase in time delay when compared to the calculated value.

d) t delay =0.35*Rp*C ox *l 2 +0.7*Rp*C L *l =(0.35*3.4K*1.25Ff*16)+(0.7*3.4K*10Ff*4) =119 ps ***PROBLEM 10.5d****.control destroy all run plot vout vin ylimit 0 1.endc.option scale=50n.tran 10p 12n 5n UIC vdd vdd 0 dc 1 vin vin 0 dc 0 pulse 0 1 5n 100p 100p 5n 10n M1 vin 0 n1 vdd PMOS L=1 W=20 M2 n1 0 n2 vdd PMOS L=1 W=20 M3 n2 0 n3 vdd PMOS L=1 W=20 M4 n3 0 vout vdd PMOS L=1 W=20 C1 vout 0 10f **models included

PROBLEM # 11.1 Meshack Pavan.A Estimate the noise margins for the inverters used to generate Fig. 11.4. Solution: - From the graphs in Fig. 11.4 and the text in p11.3, we have V OH = 5V V OL = 0V V IL = 1.8V V IH = 2.1V Therefore, noise margins, NM H = V OH - V IH = 5 2.1 = 2.9V NM L = V IL - V OL = 1.8 0 = 1.8V Long channel Process For the short channel process, similarly from the graph and text in the book, V OH = 1V V OL = 0V V IL = 400mV V IH = 500mV So, noise margins, NM H = V OH - V IH = 1 0.5 = 0.5V = 500mV NM L = V IL - V OL = 0.4 0 = 0.4V = 400mV

Assignment #10 Vinay Dindi EE510 Due Date-4/12/04 11.2) Design and simulate the DC characteristics of an inverter with Vsp approximately equal to VTHn. Estimate the resulting noise margins for the design. For Vsp~=Vthn, (ßn/ ßp) should be as large as possible. Let (ßn/ ßp)=90 So Wn=30*Wp assuming KPn=KPp and Ln=Lp If Wp=10, then Wn=300. Substituting these values in equation 11.4, we get Vsp=0.32. (Vtn=Vtp=0.28V from Table 6.3) From simulations we obtain Vsp~=0.27V.

John Spratt EE 510 Chap 10 HW 4/4/2004 Problem 11.5: Repeat Ex. 11.6 using the long channel process with a 30/10 inverter. Solution: *** Top Level Netlist *** vdd vdd 0 DC 5 Vin vin 0 DC 0 pulse 0 5 1n 0p 0p 1n 2n C1 Vout 0 50fF M1 M2 Vout Vin 0 0 NMOS L=1u W=10u Vout Vin Vdd Vdd PMOS L=1u W=30u Simulation: tphl=69ps tplh=67ps

John Spratt EE 510 Chap 10 HW 4/4/2004 Taking into account the output capacitance of the MOS s: tphl=.7*rp*ctot=.7*45k/30*(1.75f*(30+10)+50f)=126ps tplh=.7*rn*ctot=.7*15k/10*(1.75f*(30+10)+50f)=126ps W/O taking into account the output capacitance of the MOS s: tphl=.7*rp*ctot=.7*45k/30*(50f)=52.5ps tplh=.7*rn*ctot=.7*15k/10*(50f)=52.5ps W/O appears to be closer to the sim.

Problem 11.6 Steve Bard Estimate the oscillation frequency of an 11-stage ring oscillator using 30/10 inverters in the long-channel CMOS process. Compare your hand calculations to the simulation results. Solution: The frequency is about 250 MHz when calculated by hand. When simulated on SPICE, the frequency is higher, reaching 495 MHz. The hand calculations are shown below, and the SPICE simulation is shown on the next page. f rosc = n ( t + t ) PHL 1 PLH t + t = 0. 7 + PHL TOT PLH ( R n R p ) C TOT ( C C ) 5 C = + 2 oxp oxn R R n p L = 15 k W L = 45 k W 15 k = = 1.5k 10 45 k = = 1.5k 30 C C oxp oxn = 1.75 ff W L = 52.5 ff = 1.75 ff W L = 17.5 ff 5 C TOT = 175 2 ( 52.5 ff + 17.5 ff ) = ff ( k + 1.5k) (175 ff) ps t PHL + t PLH = 0.7 1.5 = 368 1 f rosc = 250MHz 11 368ps ( )

From the SPICE simulation, the frequency = 1/T = 1 / 2.02 ns = 495 MHz. *** Problem 11.6 ***.control destroy all run plot vout.endc.option scale=1u.tran.1n 6.5n uic vdd vdd 0 DC 5 R1 vout 0 1MEG **********D********G*******S*******B**** M1 vout1 vout 0 0 NMOS L=1 W=10 M2 vout1 vout vdd vdd PMOS L=1 W=30 M3 vout2 vout1 0 0 NMOS L=1 W=10 M4 vout2 vout1 vdd vdd PMOS L=1 W=30 M5 vout3 vout2 0 0 NMOS L=1 W=10 M6 vout3 vout2 vdd vdd PMOS L=1 W=30 M7 vout4 vout3 0 0 NMOS L=1 W=10 M8 vout4 vout3 vdd vdd PMOS L=1 W=30 M9 vout5 vout4 0 0 NMOS L=1 W=10 M10 vout5 vout4 vdd vdd PMOS L=1 W=30 M11 vout6 vout5 0 0 NMOS L=1 W=10 M12 vout6 vout5 vdd vdd PMOS L=1 W=30 M13 vout7 vout6 0 0 NMOS L=1 W=10 M14 vout7 vout6 vdd vdd PMOS L=1 W=30 M15 vout8 vout7 0 0 NMOS L=1 W=10 M16 vout8 vout7 vdd vdd PMOS L=1 W=30 M17 vout9 vout8 0 0 NMOS L=1 W=10 M18 vout9 vout8 vdd vdd PMOS L=1 W=30 M19 vout10 vout9 0 0 NMOS L=1 W=10 M20 vout10 vout9 vdd vdd PMOS L=1 W=30 M21 vout vout10 0 0 NMOS L=1 W=10 M22 vout vout10 vdd vdd PMOS L=1 W=30.MODEL NMOS NMOS LEVEL = 3.MODEL PMOS PMOS LEVEL = 3.end