An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems

Similar documents
Nested Krylov methods for shifted linear systems

Spectral analysis of complex shifted-laplace preconditioners for the Helmholtz equation

On complex shifted Laplace preconditioners for the vector Helmholtz equation

A decade of fast and robust Helmholtz solvers

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES

Migration with Implicit Solvers for the Time-harmonic Helmholtz

DELFT UNIVERSITY OF TECHNOLOGY

A robust computational method for the Schrödinger equation cross sections using an MG-Krylov scheme

9.1 Preconditioned Krylov Subspace Methods

A comparison of solvers for quadratic eigenvalue problems from combustion

Lecture 18 Classical Iterative Methods

Iterative Methods for Sparse Linear Systems

Induced Dimension Reduction method to solve the Quadratic Eigenvalue Problem

Shifted Laplace and related preconditioning for the Helmholtz equation

FEM and Sparse Linear System Solving

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1

Chapter 7 Iterative Techniques in Matrix Algebra

Various ways to use a second level preconditioner

Algorithms that use the Arnoldi Basis

A PRECONDITIONER FOR THE HELMHOLTZ EQUATION WITH PERFECTLY MATCHED LAYER

IDR(s) A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations

ON A ROBUST ITERATIVE METHOD FOR HETEROGENEOUS HELMHOLTZ PROBLEMS FOR GEOPHYSICS APPLICATIONS

Preconditioned inverse iteration and shift-invert Arnoldi method

The Conjugate Gradient Method

Math 108b: Notes on the Spectral Theorem

Classical iterative methods for linear systems

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Iterative Helmholtz Solvers

M.A. Botchev. September 5, 2014

Introduction to Iterative Solvers of Linear Systems

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

DELFT UNIVERSITY OF TECHNOLOGY

A Jacobi Davidson Method for Nonlinear Eigenproblems

A fast method for the solution of the Helmholtz equation

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems

Numerical Methods - Numerical Linear Algebra

Solving Ax = b, an overview. Program

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain

Math Introduction to Numerical Analysis - Class Notes. Fernando Guevara Vasquez. Version Date: January 17, 2012.

On the interplay between discretization and preconditioning of Krylov subspace methods

Full-Waveform Inversion with Gauss- Newton-Krylov Method

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems

Solving Sparse Linear Systems: Iterative methods

Solving Sparse Linear Systems: Iterative methods

C. Vuik 1 R. Nabben 2 J.M. Tang 1

DELFT UNIVERSITY OF TECHNOLOGY

Iterative methods for Linear System

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption

EXAMPLES OF CLASSICAL ITERATIVE METHODS

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna

Iterative methods for positive definite linear systems with a complex shift

Lab 1: Iterative Methods for Solving Linear Systems

Fine-Grained Parallel Algorithms for Incomplete Factorization Preconditioning

DELFT UNIVERSITY OF TECHNOLOGY

Nonlinear Eigenvalue Problems: An Introduction

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

On the Ritz values of normal matrices

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009)

arxiv: v2 [math.na] 5 Jan 2015

On deflation and singular symmetric positive semi-definite matrices

Comparison of multigrid and incomplete LU shifted-laplace preconditioners for the inhomogeneous Helmholtz equation

Computational Linear Algebra

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294)

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2,

AN HELMHOLTZ ITERATIVE SOLVER FOR THE THREE-DIMENSIONAL SEISMIC IMAGING PROBLEMS?

EFFICIENT PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION PROBLEM WITH A MULTILEVEL SEQUENTIALLY SEMISEPARABLE MATRIX STRUCTURE

Stabilization and Acceleration of Algebraic Multigrid Method

Splitting Iteration Methods for Positive Definite Linear Systems

SUMMARY REVIEW OF THE FREQUENCY DOMAIN L2 FWI-HESSIAN

Preface to the Second Edition. Preface to the First Edition

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

FEM and sparse linear system solving

On the solution of large Sylvester-observer equations

The solution of the discretized incompressible Navier-Stokes equations with iterative methods

Adaptive algebraic multigrid methods in lattice computations

BETI for acoustic and electromagnetic scattering

A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

Motivation: Sparse matrices and numerical PDE's

Semi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations

Scientific Computing WS 2018/2019. Lecture 9. Jürgen Fuhrmann Lecture 9 Slide 1

Spectral element agglomerate AMGe

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION

Background. Background. C. T. Kelley NC State University tim C. T. Kelley Background NCSU, Spring / 58

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White

The rational Krylov subspace for parameter dependent systems. V. Simoncini

Stochastic Elastic-Plastic Finite Element Method for Performance Risk Simulations

MICHIEL E. HOCHSTENBACH

Design of Structures for Earthquake Resistance

Fast iterative BEM for high-frequency scattering

A Hybrid Method for the Wave Equation. beilina

SIMULTANEOUS DETERMINATION OF STEADY TEMPERATURES AND HEAT FLUXES ON SURFACES OF THREE DIMENSIONAL OBJECTS USING FEM

The parallel computation of the smallest eigenpair of an. acoustic problem with damping. Martin B. van Gijzen and Femke A. Raeven.

ILAS 2017 July 25, 2017

Transcription:

An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems M. Baumann, and M.B. van Gijzen Email: M.M.Baumann@tudelft.nl Delft Institute of Applied Mathematics Delft University of Technology Delft, The Netherlands May 19, 217 M. Baumann An optimal shift-and-invert preconditioner 1 / 27

Motivation (1/3) Seismic exploration: elastic wave equation in frequency-domain only forward problem c geophysicsrocks! Marmousi-II problem with 2,371,2 dofs 256 z [m] Solve (K + iω k C ω 2 k M)x k = b 185 2 4 x [m] displacement at f = 6 Hz 312 1e 9 1.8 for multiple frequencies ω k. z [m] 185 2 4 x [m].6 M. Baumann An optimal shift-and-invert preconditioner 2 / 27

Motivation (1/3) Seismic exploration: elastic wave equation in frequency-domain only forward problem c geophysicsrocks! Marmousi-II problem with 2,371,2 dofs 256 z [m] Solve (K + iω k C ω 2 k M)x k = b 185 2 4 x [m] displacement at f = 6 Hz 312 1e 9 1.8 for multiple frequencies ω k. K, C, M z [m] 185 2 4 x [m].6 M. Baumann An optimal shift-and-invert preconditioner 2 / 27

Motivation (2/3) Linearization: ([ ] [ ]) [ ] ic K M ωk x ω k I k = I x k... (K + iω k C ω 2 k M)x k = b [ ] b, k = 1,..., N ω Single preconditioner: ([ ] [ ]) 1 P(τ) 1 ic K M = τ I I [ ] [ ] [ ] I τi I I = I (K + iτc τ 2 M) 1 I ic + τm M. Baumann An optimal shift-and-invert preconditioner 3 / 27

Motivation (2/3) Linearization: ([ ] [ ]) [ ] ic K M ωk x ω k I k = I x k... (K + iω k C ω 2 k M)x k = b [ ] b, k = 1,..., N ω Single preconditioner: ([ ] [ ]) 1 P(τ) 1 ic K M = τ I I [ ] [ ] [ ] I τi I I = I (K + iτc τ 2 M) 1 I ic + τm M. Baumann An optimal shift-and-invert preconditioner 3 / 27

Motivation (3/3) Convergence behavior for two different τ. 1 1 Relative residual norm 1 2 3 4 5 6 bad τ Relative residual norm 1 2 3 4 5 6 good τ 7 7 8 2 4 6 8 1 12 14 Number of matrix vector multiplications 8 5 1 15 2 25 3 35 Number of matrix vector multiplications M. Baumann An optimal shift-and-invert preconditioner 4 / 27

Motivation (3/3) Convergence behavior for two different τ. 1 1 Relative residual norm 1 2 3 4 5 6 bad τ Relative residual norm 1 2 3 4 5 6 good τ 7 7 8 2 4 6 8 1 12 14 Number of matrix vector multiplications 8 5 1 15 2 25 3 35 Number of matrix vector multiplications M. Baumann An optimal shift-and-invert preconditioner 4 / 27

Outlook 1 The shift-and-invert preconditioner within multi-shift GMRES 2 Optimization of seed frequency τ 3 Numerical experiments Validations Shifted Neumann preconditioner Matrix equation with rotation M. Baumann An optimal shift-and-invert preconditioner 5 / 27

Shift-and-invert preconditioner for GMRES Want to solve A := [ ] ic K, B := I [ ] M I (A ω k B)x k = b, k = 1,..., N ω, with a single preconditioner P(τ) = (A τb): (A ω k B)P 1 k y k = b (A(A τb) 1 η k I )y k = b M. Baumann An optimal shift-and-invert preconditioner 6 / 27

Shift-and-invert preconditioner for GMRES Want to solve A := [ ] ic K, B := I [ ] M I (A ω k B)x k = b, k = 1,..., N ω, with a single preconditioner P(τ) = (A τb): (A ω k B)P 1 k y k = b (A(A τb) 1 η k I )y k = b M. Baumann An optimal shift-and-invert preconditioner 6 / 27

Shift-and-invert preconditioner for GMRES Want to solve A := [ ] ic K, B := I [ ] M I (A ω k B)x k = b, k = 1,..., N ω, with a single preconditioner P(τ) = (A τb): (A ω k B)P 1 k y k = b ( C η k I )y k = b M. Baumann An optimal shift-and-invert preconditioner 6 / 27

Multi-shift GMRES... Did you know? For shifted problems, (C η k I )y k = b, k = 1,..., N ω, Krylov spaces are shift-invariant K m (C, b) K m (C ηi, b) η C. Multi-shift GMRES: (C η k I )V m = V m+1 (H m η k I) Reference A. Frommer and U. Glässner. Restarted GMRES for Shifted Linear Systems. SIAM J. Sci. Comput., 19(1), 15 26 (1998) M. Baumann An optimal shift-and-invert preconditioner 7 / 27

Multi-shift GMRES... Did you know? For shifted problems, (C η k I )y k = b, k = 1,..., N ω, Krylov spaces are shift-invariant K m (C, b) K m (C ηi, b) η C. Multi-shift GMRES: (C η k I )V m = V m+1 (H m η k I) Reference A. Frommer and U. Glässner. Restarted GMRES for Shifted Linear Systems. SIAM J. Sci. Comput., 19(1), 15 26 (1998) M. Baumann An optimal shift-and-invert preconditioner 7 / 27

Optimization of seed frequency ( A(A τb) 1 ω ) k ω k τ I y k = b Theorem: GMRES convergence bound [Saad, Iter. Methods] Let the eigenvalues of a matrix be enclosed by a circle with radius R and center c. Then the GMRES-residual norm after i iterations r (i) satisfies, r (i) ( ) R(τ) i r () c 2(X ), c(τ) where X is the matrix of eigenvectors, and c 2 (X ) its condition number in the 2-norm. M. Baumann An optimal shift-and-invert preconditioner 8 / 27

Optimization of seed frequency ( A(A τb) 1 ω ) k ω k τ I y k = b Theorem: msgmres convergence bound [Saad, Iter. Methods] Let the eigenvalues of a matrix be enclosed by a circle with radius R k and center c k. Then the GMRES-residual norm after i iterations r (i) k satisfies, r (i) k ( ) r () c Rk (τ) i 2(X ), k = 1,..., N ω, c k (τ) where X is the matrix of eigenvectors, and c 2 (X ) its condition number in the 2-norm. M. Baumann An optimal shift-and-invert preconditioner 8 / 27

The preconditioned spectra no damping N ω = 5 1.5 imag part.5 1 1.5.5 1 1.5 real part M. Baumann An optimal shift-and-invert preconditioner 9 / 27

The preconditioned spectra no damping N ω = 5 1 imag part.5 R c k.5 1 1.5.5 1 1.5 real part M. Baumann An optimal shift-and-invert preconditioner 9 / 27

The preconditioned spectra with damping ɛ > ˆω k := (1 ɛi)ω k 2 1.5 imag part 1.5.5 1.5 1.5.5 1 1.5 real part M. Baumann An optimal shift-and-invert preconditioner 9 / 27

The preconditioned spectra with damping ɛ > ˆω k := (1 ɛi)ω k 2 R(τ) c k+1 1.5 c k imag part 1 c R ϕ k.5 c 1.5 1.5 1.5.5 1 1.5 real part M. Baumann An optimal shift-and-invert preconditioner 1 / 27

The preconditioned spectra Lemma: Optimal seed shift for msgmres [B/vG, 216] (i) For λ Λ[AB 1 ] it holds I(λ). (ii) The preconditioned spectra are enclosed by circles of radii R k and center points c k. (iii) The points {c k } Nω k=1 C described in statement (ii) lie on a circle with center c and radius R. (iv) Consider the preconditioner P(τ ) = A τ B. An optimal seed frequency τ for preconditioned multi-shift GMRES is given by, ( ) τ (ɛ) = min max Rk (τ) =... = τ C k=1,..,n ω c k = 2ω1ω N ω i ω 1 + ω Nω [ɛ2 (ω 1 + ω Nω ) 2 + (ω Nω ω 1) 2 ] ω 1ω Nω ω 1 + ω Nω M. Baumann An optimal shift-and-invert preconditioner 11 / 27

The preconditioned spectra Proof (1/4) Proof. (i) We have to show I(ω) for, [ ] ic K x = ω I [ ] M x I or, alternatively (λ = iω), consider the QEP, (K + λc + λ 2 M)v =. R(λ) I(ω) M. Baumann An optimal shift-and-invert preconditioner 12 / 27

The preconditioned spectra Proof (1/4) Proof. (i) We have to show I(ω) for, [ ] ic K x = ω I [ ] M x I or, alternatively (λ = iω), consider the QEP, (K + λc + λ 2 M)v =. R(λ) I(ω) M. Baumann An optimal shift-and-invert preconditioner 12 / 27

The preconditioned spectra Proof (2/4) (ii) The preconditioned spectra are enclosed by circles. Factor out AB 1, C η k I = A(A τb) 1 η k I = AB 1 (AB 1 τi ) 1 η k I, and note that Λ[AB 1 ] λ is a Möbius transformation ( ). λ λ τ ω k ω k τ, Reference M.B. van Gijzen, Y.A. Erlangga, C. Vuik. Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian. SIAM J. Sci. Comput., 29(5), 1942 1958 (27) ( ) : z az+b cz+d M. Baumann An optimal shift-and-invert preconditioner 13 / 27

The preconditioned spectra Proof (3/4) (iii) Spectra are bounded by circles (c k, R). These center point {c k } Nω k=1 lie on a big circle (c, R). 1. Construct center: ( ɛ τ 2 ) c =, C 2I(τ)(I(τ) + ɛr(τ)) 2. A point c k has constant distance to c: R 2 = c k c 2 2 = τ 2 (ɛ 2 + 1) 4(I(τ) + ɛr(τ)) 2 (independent of ω k ) M. Baumann An optimal shift-and-invert preconditioner 14 / 27

The preconditioned spectra with damping ɛ > ˆω k := (1 ɛi)ω k 2 R(τ) c k+1 1.5 c k imag part 1 c R ϕ k.5 c 1.5 1.5 1.5.5 1 1.5 real part M. Baumann An optimal shift-and-invert preconditioner 15 / 27

The preconditioned spectra Proof (4/4) 1. (iv) Find optimal τ. 1..96 τ = min max τ C k=1,..,n ω 1 c k = f (c, R, ϕ k ) ( ) R c k 2 polar coordinates 3 τ ϕ = (optimize along ϕ) imag part (relative).8.6.4.2. τ ˆω min ˆω max.92.88.84.8.76.72.68..2.4.6.8 1. real part (relative).64 M. Baumann An optimal shift-and-invert preconditioner 16 / 27

The preconditioned spectra Proof (4/4) 1. (iv) Find optimal τ. 1..96 τ = min max τ C k {1,N ω} 1 c k = f (c, R, ϕ k ) ( ) R c k 2 polar coordinates 3 τ ϕ = (optimize along ϕ) imag part (relative).8.6.4.2. τ ˆω min ˆω max.92.88.84.8.76.72.68..2.4.6.8 1. real part (relative).64 M. Baumann An optimal shift-and-invert preconditioner 16 / 27

The preconditioned spectra Proof (4/4) 1. (iv) Find optimal τ. 1..96 τ = min max τ C k {1,N ω} 1 c k = f (c, R, ϕ k ) ( ) R c k 2 polar coordinates 3 τ ϕ = (optimize along ϕ) imag part (relative).8.6.4.2. τ ˆω min ˆω max.92.88.84.8.76.72.68..2.4.6.8 1. real part (relative).64 τ = 2ω 1ω Nω ω 1 +ω Nω [ɛ i 2 (ω 1 +ω Nω ) 2 +(ω Nω ω 1 ) 2 ]ω 1 ω Nω ω 1 +ω Nω M. Baumann An optimal shift-and-invert preconditioner 16 / 27

1 The shift-and-invert preconditioner within multi-shift GMRES 2 Optimization of seed frequency τ 3 Numerical experiments Validations Shifted Neumann preconditioner Matrix equation with rotation M. Baumann An optimal shift-and-invert preconditioner 17 / 27

The (damped) time-harmonic elastic wave equation Continuous setting Elastic wave equation Discrete setting Solve ˆω k = (1 ɛi)ω k ωk 2 ρ(x)u k σ(u k ) = s with boundary conditions iω k ρ(x)bu k + σ(u k )ˆn =, σ(u k )ˆn =, on Ω a Ω r. (K + iω k C ωk 2 M)u k = s with FEM matrices K ij = σ(ϕ i ) : ϕ j dω, Ω M ij = ρ(x)ϕ i ϕ j dω, Ω C ij = ρ(x)bϕ i ϕ j dγ. Ω a nutils M. Baumann An optimal shift-and-invert preconditioner 18 / 27

The (damped) time-harmonic elastic wave equation Continuous setting Elastic wave equation Discrete setting Solve ˆω k = (1 ɛi)ω k ωk 2 ρ(x)u k σ(u k ) = s with boundary conditions iω k ρ(x)bu k + σ(u k )ˆn =, σ(u k )ˆn =, on Ω a Ω r. (K + iω k C ωk 2 M)u k = s with FEM matrices K ij = σ(ϕ i ) : ϕ j dω, Ω M ij = ρ(x)ϕ i ϕ j dω, Ω C ij = ρ(x)bϕ i ϕ j dγ. Ω a nutils M. Baumann An optimal shift-and-invert preconditioner 18 / 27

Numerical experiments Validations and second-level preconditioners Set-up: An elastic wedge problem. Density 21 u_z at 16. Hz 1e 1 2.4 u_x at 24. Hz 1e 11 1. 27 24 2..75 21 1.6.5 4 198 4 1.2 4.25 z [m] 195 z [m].8 z [m]. 192.4 189..25 8 186 8.4 8.5 183.8.75 1 3 6 x [m] 18 1 3 6 x [m] 1 3 6 x [m] M. Baumann An optimal shift-and-invert preconditioner 19 / 27

Numerical experiments (1/4) Validations I τ (ɛ) = ω 1 ω Nω (1 + ɛ 2 ) e i arctan ( ) ɛ 2 (ω 1 +ω Nω ) 2 +(ω Nω ω 1 ) 2 4ω 1 ω Nω ω min /2π [Hz] ω max /2π [Hz] N ω # iterations CPU time [s] 5 16 45.6 1 5 1 16 48.7 2 16 47.3 5 251 25.1 1 1 1 252 223.7 2 252 243.5 damping factor ɛ =.5 #dofs = 48, 642 (Q 1 finite elements) M. Baumann An optimal shift-and-invert preconditioner 2 / 27

Numerical experiments (2/4) Validations II 1 1 N ω = 5 Convergence behavior: ω min and ω max converge slowest, smallest factor R/ c k yields fastest convergence, inner frequencies for free. Relative residual norm 2 3 4 5 6 7 8 5 1 15 2 25 3 35 Number of matrix vector multiplications 2 1.5 1.5.5 2 1.5 1.5.5 1 1.5 M. Baumann An optimal shift-and-invert preconditioner 21 / 27

Numerical experiments (3/4) Shifted Neumann preconditioner Apply a Neumann polynomial preconditioner of degree n. 14 12 14 12 ɛ =.5 ɛ =.3 ɛ =.1 ɛ =.5 1 1 Number of iterations 8 6 Number of iterations 8 6 4 4 2 ɛ =.5 ɛ =.3 ɛ =.1 ɛ =.5 1..8.6.4.2. Seed shift (scaled imag part) 2 1..8.6.4.2. Seed shift (scaled imag part) case n = case n = 5 M. Baumann An optimal shift-and-invert preconditioner 22 / 27

Numerical experiments (4/4) Matrix equation with rotation Solve matrix equation, A(X) := KX + icxω MXΩ 2 = B. Spectrum of A P 1 1 1.5 1. imag part.5..5 1.5 1..5..5 1. 1.5 real part M. Baumann An optimal shift-and-invert preconditioner 23 / 27

Numerical experiments (4/4) Matrix equation with rotation Solve matrix equation, A(X) := KX + icxω MXΩ 2 = B. Spectrum of A P 1 1 P 1 2 1.5 e i(φ 2 φ 1 ) 1. imag part.5..5 1.5 1..5..5 1. 1.5 real part M. Baumann An optimal shift-and-invert preconditioner 23 / 27

Summary 1 1 2 3 4 5 6 7 Relative residual norm 1 2 3 4 5 6 7 bad τ 4 3 2 1 1 2 3 4 5 8 2 4 6 8 1 12 14 Number of matrix vector multiplications 1 2 1.5 1.5 Relative residual norm 1 2 3 4 5 6 7 good τ.5 2 1.5 1.5.5 1 1.5 8 5 1 15 2 25 3 35 Number of matrix vector multiplications M. Baumann An optimal shift-and-invert preconditioner 24 / 27

Summary 1 1 2 3 4 5 6 7 Relative residual norm 1 2 3 4 5 6 7 bad τ 4 3 2 1 1 2 3 4 5 8 2 4 6 8 1 12 14 Number of matrix vector multiplications 1 2 1.5 1.5 Relative residual norm 1 2 3 4 5 6 7 good τ.5 2 1.5 1.5.5 1 1.5 8 5 1 15 2 25 3 35 Number of matrix vector multiplications M. Baumann An optimal shift-and-invert preconditioner 24 / 27

Conclusions Optimal shift-and-invert preconditioner for msgmres. Second level: Shifted Neumann preconditioner & rotations in matrix equation approach. For multi-core CPUs: Splitting strategy of frequency range. Optimality for ɛ = only by continuity.? Relation to pole selection in rational Krylov methods. Thank you for your attention! M. Baumann An optimal shift-and-invert preconditioner 25 / 27

Conclusions Optimal shift-and-invert preconditioner for msgmres. Second level: Shifted Neumann preconditioner & rotations in matrix equation approach. For multi-core CPUs: Splitting strategy of frequency range. Optimality for ɛ = only by continuity.? Relation to pole selection in rational Krylov methods. Thank you for your attention! M. Baumann An optimal shift-and-invert preconditioner 25 / 27

References M. Baumann and M.B. van Gijzen. Nested Krylov methods for shifted linear systems. SIAM J. Sci. Comput., 37(5), S9-S112 (215). M. Baumann, R. Astudillo, Y. Qiu, E. Ang, M.B. van Gijzen, and R.-E. Plessix. An MSSS-Preconditioned Matrix Equation Approach for the Time-Harmonic Elastic Wave Equation at Multiple Frequencies. DIAM Technical Report 16-4, TU Delft [accepted]. M. Baumann and M.B. van Gijzen. Efficient iterative methods for multi-frequency wave propagation problems: A comparison study. Proceedings of ICCS 217 [accepted]. M. Baumann and M.B. van Gijzen. An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems. DIAM Technical Report 17-3, TU Delft [under review]. Research funded by Shell. M. Baumann An optimal shift-and-invert preconditioner 26 / 27

Finite element discretization in Python FEM discretization of stiffness matrix K, K ij = σ(ϕ i ) : ϕ j dω, where Ω ( ) σ(ϕ i ) = λ(x)div(ϕ i )I 3 + µ(x) ϕ i + ( ϕ i ) T, becomes in nutils: ndims = 3 phi = domain.splinefunc(degree=2).vector(ndims) stress = lambda u: lam*u.div(geom)[:,_,_]*function.eye(ndims) + mu*u.symgrad(geom) elast = function.outer( stress(phi), phi.grad(geom) ).sum([2,3]) K = domain.integrate(elast, geometry=geom, ischeme= gauss2 ) Go back M. Baumann An optimal shift-and-invert preconditioner 27 / 27