Thermal Management of Golden DRAGON LED Application Note

Similar documents
Thermal Management of SMT LED Application Note

Thermal Management of Light Sources Based on SMD LEDs Application note

Package-Related Thermal Resistance of LEDs Application Note

Thermal Consideration of Flash LEDs Application Note

Projection with LED Light Sources Application Note

Temperature Measurement with Thermocouples Application Note

OSRAM OSTAR Observation Application Note

Understanding Thermal Characteristic of SOT-223 Package

Technical Notes. Introduction. PCB (printed circuit board) Design. Issue 1 January 2010

High-Speed Switching of IR-LEDs (Part I) Background and Datasheet Definition

Effective Thermal Management of Crystal IS LEDs. Biofouling Control Using UVC LEDs

TECHNICAL INFORMATION

DATA SHEET. PEMD48; PUMD48 NPN/PNP resistor-equipped transistors; R1 = 47 kω, R2 = 47 kω and R1 = 2.2 kω, R2 = 47 kω DISCRETE SEMICONDUCTORS

Super Bright LEDs, Inc.

TLF80511TF. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511TFV50 TLF80511TFV33. Rev. 1.

BCM857BV; BCM857BS; BCM857DS

Lead (Pb)-Bearing Thick Film, Rectangular High Value Chip Resistor

DATA SHEET. PBSS4480X 80 V, 4 A NPN low V CEsat (BISS) transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2004 Aug 5

DATA SHEET. PBSS4250X 50 V, 2 A NPN low V CEsat (BISS) transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2003 Jun 17

DATA SHEET. BCP69 PNP medium power transistor; 20 V, 1 A DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2002 Nov 15.

Lead (Pb)-Free Thick Film, Rectangular High Value Chip Resistor

EHP-A07/UB01-P01. Technical Data Sheet High Power LED 1W

EVERLIGHT ELECTRONICS CO.,LTD. Technical Data Sheet High Power LED 1W (Preliminary)

DATA SHEET. BC369 PNP medium power transistor; 20 V, 1 A DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2003 Nov 20.

Eye Safety of IREDs used in Lamp Applications Application Note

TLF80511EJ. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33. Rev. 1.

Design Guidelines for SFT Chipsets Assembly

65 V, 100 ma NPN/PNP general-purpose transistor. Table 1. Product overview Type number Package NPN/NPN PNP/PNP Nexperia JEITA

Surface Mount Power Resistor Thick Film Technology

3M CF Card Header CompactFlash Type I, Low Profile, Long Guides, SMT, Inverse

HIGH POWER LED TSLG-WF7060-A07

NPN/PNP low V CEsat Breakthrough in Small Signal (BISS) transistor pair in a SOT457 (SC-74) Surface Mounted Device (SMD) plastic package.

NPN/PNP transistor pair connected as push-pull driver in a SOT457 (SC-74) Surface-Mounted Device (SMD) plastic package.

A Guide to Board Layout for Best Thermal Resistance for Exposed Packages

Conductive Polymer Aluminum Capacitors SMD (Chip), Low Impedance

DATA SHEET. BC368 NPN medium power transistor; 20 V, 1 A DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2003 Dec 01.

NPN/PNP low V CEsat Breakthrough in Small Signal (BISS) transistor pair in a SOT457 (SC-74) Surface Mounted Device (SMD) plastic package.

Lead (Pb)-free Thick Film, Rectangular Commodity Chip Resistors

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

TEST METHOD FOR STILL- AND FORCED-AIR JUNCTION-TO- AMBIENT THERMAL RESISTANCE MEASUREMENTS OF INTEGRATED CIRCUIT PACKAGES

TLE Data Sheet. Automotive Power. Low Dropout Fixed Voltage Regulator TLE42644G. Rev. 1.1,

EVERLIGHT ELECTRONICS CO.,LTD. Technical Data Sheet High Power LED 1W

60 V, 0.3 A N-channel Trench MOSFET

CHAPTER 6 THERMAL DESIGN CONSIDERATIONS. page. Introduction 6-2. Thermal resistance 6-2. Junction temperature 6-2. Factors affecting R th(j-a) 6-2

Pulse Proof Thick Film Chip Resistors

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

DATA SHEET. BC856; BC857; BC858 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2003 Apr 09

DATA SHEET. BC846; BC847; BC848 NPN general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2002 Feb 04

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

EHP-AX08EL/GT01H-P03/5063/Y/N13

Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance

3M HDC Socket.100 Right Angle, PCB, 3 or 4-Row, Solder Tail or Press-Fit HDC Series

ASMT-QYBG / ASMT-QYBH / ASMT-QYBJ 0.5W Warm White Power PLCC4 Surface Mount LED Datasheet

STTH16R04CT. Ultrafast recovery diode. Main product characteristics. Features and benefits. Description. Order codes TO-220AB TO-220FPAB

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Trench MOS Barrier Schottky Rectifier for PV Solar Cell Bypass Protection

Intel Stratix 10 Thermal Modeling and Management

Aluminum Capacitors SMD (Chip), High Temperature

DATA SHEET. PDTA114E series PNP resistor-equipped transistors; R1 = 10 kω, R2 = 10 kω DISCRETE SEMICONDUCTORS

EHP-AX08EL/UB01H-P01/B7B8/F3

Thermal Calculation for Linear Regulator

The Increasing Importance of the Thermal Management for Modern Electronic Packages B. Psota 1, I. Szendiuch 1

Ultra-Small Footprint N-Channel FemtoFET MOSFET Test EVM

Automotive N- and P-Channel 100 V (D-S) 175 C MOSFET

EHP-A23/RGB33-P01/TR. Data Sheet. Materials. High Power LED 1W. 1 of 12 Release Date: :11:33.0 Expired Period: Forever

20 / 20 V, 800 / 550 ma N/P-channel Trench MOSFET

ASMT-UYBG / ASMT-UYBH / ASMT-UYBJ 0.25W Warm White Power PLCC4 Surface Mount LED Datasheet

Zener Diodes FEATURES APPLICATIONS

Intel Quark SoC X1000

N-channel enhancement mode Field-Effect Transistor (FET) in a small SOT23 (TO-236AB) Surface-Mounted Device (SMD) plastic package using

BF545A; BF545B; BF545C

TLE42344G. Data Sheet. Automotive Power. Low Dropout Linear Voltage Regulator. Rev. 1.0,

Power Resistors, for Mounting onto a Heatsink Thick Film Technology

DISCRETE SEMICONDUCTORS DATA SHEET. PMBT3906 PNP switching transistor. Product specification Supersedes data of 1999 Apr 27.

150 V, 2 A NPN high-voltage low V CEsat (BISS) transistor

Applications For a variety of manufacturing and monitoring applications, which require beam interruption Photointerrupters

ASMT-UYBG / ASMT-UYBH 0.25W Warm White Power PLCC4 Surface Mount LED. Datasheet

BF556A; BF556B; BF556C

SM98A Harsh Media Backside Absolute Pressure Series

Automotive N- and P-Channel 40 V (D-S) 175 C MOSFET

Discrete Semiconductor Devices

Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)

Aluminum Electrolytic Capacitors SMD (Chip) Long Life Vertical

Dual High-Voltage Trench MOS Barrier Schottky Rectifier

Silicon PIN Photodiode

Power Resistor for Mounting onto a Heatsink Thick Film Technology

Power Resistor for Mounting onto a Heatsink Thick Film Technology

DATA SHEET. BC856; BC857; BC858 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Apr 12

OSTAR -Lighting Application Note

Green Thick Film Chip Resistors

Infrared Emitter (850 nm) Version 1.2 SFH 4356P. Features: Wavelength 850nm Short switching time Good spectral match to silicon photodetectors

Lead (Pb)-Free Thick Film, Rectangular, Trimmable Chip Resistors

DO-15 DO-201AD STTH3R04Q STTH3R04

EVERLIGHT ELECTRONICS CO.,LTD.

303139, FEATURES INTRODUCTION. TABLE 1 - TOLERANCE AND TCR VS. RESISTANCE VALUE (- 55 C to C, + 25 C ref.)

AN An Analysis for Power Dissipation of LDO Application with High Power. Hawk Chen. Thermal topology of LDO: Introduction:

Platinum SMD Flat Chip Temperature Sensor

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Aluminum Capacitors SMD (Chip) Long Life Vertical

Transcription:

Thermal Management of Golden DRAGON LED Application Note Introduction The Golden DRAGON Package is the newest member of the OSRAM SMT package family. The Golden DRAGON LED consists of a leadframe with integrated heat spreader and a thermoplastic body. The chip is mounted in a reflector formed by the thermoplastic. In order to dissipate the heat the package has an additional thermal connection. This connection is soldered to a thermal enhanced PCB, on the backside of the housing. Therefore the Golden DRAGON package is suitable for high power dissipations in the range of 1 W. In order to achieve reliability and optimal performance a proper thermal management design is absolutely necessary. Like all electronic components, the Golden DRAGON LED s have thermal limitations. The allowed operation temperature for the specific lifetime is limited by the glass-point of the LED resin. This means that the temperature of the die inside, doesn t have to exceed this value when exposed to the expected operation temperature. This brief will give the design engineer an introduction in the thermal basic of Golden DRAGON LED s. Furthermore some concepts are shown in order to improve the thermal design. Explanation of Basic Relationships The power dissipation P D on the junction of a chip is distributed in the package and in the substrate by means of heat conduction, and from the free surfaces to the environment by means of radiation and convection. Junction refers to the p-n junction within the semiconductor die. This is the region of the chip where the photons are generated. To facilitate discussion of the static properties of the Golden DRAGON LED, the internal structure and its method of mounting on the substrate is illustrated in Figure 1. Leads Dielectric Bond Wire Die Attach Heat Sink Die Solder Molding Compound Solder Pads Aluminium Plate Figure 1: Internal Structure of Golden DRAGON LED Package The Golden DRAGON LED consists of a chip mounted on a chip carrier (heat spreader) by solder or bonding adhesive. The heat spreader consists of a highconductivity material such as copper. The associated static equivalent circuit diagram is shown in Figure 2. The following analogies with electrical quantities have been used: The power dissipation P D occurring close to the chip surface is symbolised by a current source. The resistance network is essentially a serial connection to the ambient temperature. As a first approximation, the parallel-connected thermal resistance of the plastic housing can be neglected. The ambient temperature T a is represented by a voltage source. December, 213 Page 1 of 12

R thja R thjs R th R th R th R th Die Die attach Heat sink P D T j T s Internal Thermal Resistance R thsa R th Solderpoint Solderpad R th Board Application Specific Thermal Resistance Figure 2: Static Equivalent Circuit In accordance with the analogy, the thermal current P D = Q/t can now be calculated from the thermic Ohm s law. = T a resistance value can be divided into the thermal resistance solder point to board R thsb considering the heat transfer through the printed circuit board and the thermal resistance board to ambient R thba considering the heat transfer to the surrounding fluid. The thermal resistance R thsb is strongly influenced by various factors e.g. solder pad design, component placement, printed board material and board construction. The R thba characterize the heat transfer to ambient, e.g. external heat sinks. Rth JS TJunction Component U I R as Tj Ta PD RthJA Equation 1 For the purpose in application, the junction temperature T j is of practical interest. Figure 3: Resistances Series Configuration Rth SB Rth BA TSolder Point TBoard TAmbient Substrate Technology Cooling System T j R thja P Equation 2 D T a The total thermal resistance R thja of these package can be further broken down into two contribution levels of the heat transfer path from a component s junction to it s ultimate environment. At the Golden DRAGON component level the internal thermal resistance exists between the junction and exposed side of the internal heat spreader. This resistor value is given by the package construction e.g. geometry, used material and chip size. In the case of Golden DRAGON LED this resistor value refers to the thermal resistance junction to solder point R thjs in the datasheet. The solder point temperature is defined as the temperature of the solder joint under the heat spreader. The external level resistance is the application specific resistance to the heat that flows from the internal heat spreader to the surrounding environment. This thermal These thermal resistances are in a series configuration (Figure 3). RthJA RthJS RthSB RthBA Equation 3 The values for the R thjs can be found in the specific datasheet of the Golden DRAGON LED and are fixed by the package design. The values of R thjs were determined with consideration of the emitted optical power, and represent thus the real thermal resistance of the Golden DRAGON. There is a wide range of application systems in which Golden DRAGON LED Packages can be used. Summarise the explanations; in general thermal management can be divided into internal thermal management and external thermal management. Internal thermal management handles the thermal resistance from junction to the package case and external thermal management handles from the package case to the ambient. In this December, 213 Page 2 of 12

case the external thermal management plays a significant role. External thermal manage includes the selection of the cooling mode, heat sink design, selection of substrate material and attachment process. After the cooling mode is determined, the cooling system can be designed. The thermal resistances R thsb and R thba have to be optimised for the application. In general the junction temperature of the Golden DRAGON LED temperature must be maintained below the maximum allowable limits mentioned in the specific datasheet of the Golden DRAGON LED. conditions. Therefore a relative temperature scale is used in the illustrations. A geometry model of the entire configuration is created from the design drawings for the Golden DRAGON LED package and the geometry data of the test board and its metallization. The geometric and material data as well as the standard boundary conditions are listed in the following table. Component Outer PCB Dimensions L x W Golden DRAGON LED 25 x 25 mm² Thermal Resistance (Solder Point to Board): Substrate Technologies Board Material FR4 on Aluminium MCPCB FPC on Aluminium To ensure the best efficiency and good thermal management the thermal resistance solder point to ambient has to be optimised. The used PCB technology plays a significant role. Nowadays in addition to the standard substrate, such as FR4 PCB material, thermal enhanced substrate technologies can be found. This chapter will focus on MCPCB (metal core printed circuit board), flexible PCB laminated on aluminium and enhanced FR4 PCB glued on aluminium. For the use with the Golden DRAGON LED it is necessary to choose the right technology that is able to fulfil the thermal requirements. In order to show the thermal performance of these substrate technologies the method of numerical analysis is used. All the results based on a CFD 1 -Analysis with the following conditions. The goal of the analysis is a comparison under the same environmental 1 Computational Fluid Dynamics Material for Solder Pads Power Dissipation Reference temperature 35 µm Cu 1 W 25 C In the analysis model the recommended solder pad layout is considered. The board is in thermal contact with a cold plate with reference temperature of 25 C. No contact resistances are considered. In the thermal analysis only heat transfer through conduction is considered. Unless expressly stated, the steady state calculations are always performed with a fixed power dissipation of 1 W. Other heat sources, e.g. resistors, voltage regulators etc., are not considered in the analysis. December, 213 Page 3 of 12

The simulation results are valid under the mentioned boundary conditions. The Golden DRAGON LED is soldered to the printed circuit board. The thermal model can be seen in the following figures. Metal Core Printed Circuit Board MCPCB are those boards which incorporate a base metal material as heat spreader as an integral part of the circuit board. Single Layer MCPCB provides a very thermally conductive base material for heat spreading. Furthermore MCPCB can take advantage of a high thermal conductivity of the dielectric polymer layer (Figure 6). Mold Compound Copper Layer Dielec tic Layer Lead Metal Core Figure 4: Thermal Model of Golden DRAGON LED Golden Dragon LED Figure 6: Structure of Single Layer MCPCB According to Figure 6 in the table below typical thickness of the base layers are listed. Copper Layer 35 2 µm Dielectric Layer 75 1 µm Metal Layer 1 3 mm Substrate Figure 5: Thermal Model of Assembly In the flowing analysis a thickness of 1 µm for the dielectric is used. The metal core consists of aluminium alloy, with a thickness of 1.5 mm. For the copper layer the standard thickness of 35 µm is used. The lowest thermal resistance can be reached with a thermal enhanced dielectric layer. In the simulation a thermal conductivity of 1.3 W/m-K was assumed. December, 213 Page 4 of 12

1.9.8.7.6.5.4.3.2.1 Flexible PCB on Aluminium Another possible solution is mounting the Golden DRAGON LED on a flexible substrate such as PEN, PET or PI material placed on an aluminium heat sink using a pressure sensitive adhesive (PSA). Like the metal core of the MCPCB the aluminium acts as a heat spreader. The principle construction of a one layer FPC on aluminium can be seen in Figure 9. Copper Layer Cutting Plane: Solder Pads Figure 7: MCPCB with thermal enhanced dielectric ( = 1.3 W/m-K) The use of FR4 as the dielectric layer shows an increase of the thermal resistance. This effect is illustrated in figure 7 and 8. Generally speaking the usage of metal core printed circuit board shows the best performance according to the thermal management. 1.9.8.7.6.5.4.3.2.1 Flexible Substate Adhesive Aluminium Plate Figure 9: Structure of flexible PCB on Aluminium For the thermal comparison the thickness of each layer and the material is listed in the following table Copper Layer 35 µm Dielectric Layer 5 µm (PEN) Adhesive Layer 5 µm (Standard PSA) Aluminium Plate 1.5 mm Compared to the MCPCB with FR4 dielectric the thermal performance decreases in the range of 3 % (Figure 1). Cross Section: Solder Pads Figure 8: MCPCB with standard dielectric ( =.3 W/m-K) December, 213 Page 5 of 12

1.9.8.7.6.5.4.3.2.1 FR4 PCB / FR4 on Aluminium A standard substrate material such as FR4 doesn t provide a proper thermal management through the low thermal conductivity of FR4. An analysis of a FR4 PCB (thickness t = 1 mm) glued on aluminium plate using standard pressure sensitive adhesive shows an high R thsb in the range of 5 K/W. Cross Section: Solder Pads Figure 1: FPC on aluminium with standard adhesive Using a thermal conductive adhesive can further optimise this concept. This step improves the thermal performance. The analysis points out a similar performance than MCPCB with FR4 (Figure 11). Further improvements can be done by the use of thermal vias (see next section) or two layer FPCs. The performance can be significantly improved by actions like array of thermal vias and the usage of Multi Copper - Layer PCBs. Thermal vias are often used to reduce the thermal resistance of materials with low thermal conductivity like polyimides on substrates or FR4 PCB. Figure 12 shows an example of a typical via design on PCB. A thermal via has an outside diameter D, height h and is plated with copper of the thickness t (Figure 13). 1.9.8.7.6.5.4.3.2.1 Figure 12:Structure of FR4 PCB on Aluminium with thermal vias Cross Section: Solder Pads Figure 11: FPC on Aluminium with thermal conductive adhesive December, 213 Page 6 of 12

h D 1.9.8.7.6.5.4.3.2.1 Copper Plane t pitch Figure 13: Thermal Via The thermal resistance of the n vias can be approximately estimated using one dimensional heat conduction analysis: h Rv n k ( D t t Equation 5 2 ) Cross Section: Solder Pads Figure 14: FR4 PCB on Aluminium with thermal conductive adhesive and thermal vias For an overview the thermal resistance solder point to board RthSB is briefed in the following table. The values are only valid for the mentioned PCB constructions and boundary conditions. Where Rv is the total thermal resistance of the number n of vias and k is the thermal conductivity of the via plating material. The density and size of the thermal vias depends on many factors, e.g. hole diameter, pitch or copper plating thickness. The thermal resistance of the array of vias can also be optimised. In order to give a feeling for improvements the example illustrated in Figure 12 was analysed in the simulation. Figure 14 shows the temperature distribution. The thermal performance is now in the range of MCPCB with FR4 dielectric. The results indicates that the use of standard FR4 on aluminium with further improvements is possible but it strongly depends on the construction of the PCB e.g. thermal vias, thermal conductive adhesive. Substrate Technology MPCB with enhanced dielectric MPCB with FR4 dielectric FPC on aluminium with standard PSA FPC on aluminium with thermal enhanced PSA FR4 PCB glued on aluminium with thermal vias Thermal Resistance R thsb 3.4 K/W 7.3 K/W 9.5 K/W 7.6 K/W 9.7 K/W December, 213 Page 7 of 12

Thermal Resistance (Board to Ambient) Heat Sink Considerations Due to the increased power dissipation of the Golden DRAGON LED an effective thermal enhancement is required. Heat transfer from a solid body to a fluid can be enhanced by extending the surface of the solid body. Inspection of convective heat transfer rate equation shows that, for a given heat dissipation, the temperature difference is controlled by the product 2 h A. Increasing the product is usually not easily achieved by increasing the heat transfer coefficient h. The increase of the heat transfer surface area is most often a more effective method to accomplish the desired performance improvement. One of the common methods to increase the surface area is the use of heat sinks. Thermal Simulation has been carried out in order to show the thermal impact of heat sink configurations. Several dimensions of flat, rectangular heat sink areas are considered. The material used for flat heat sinks is usually aluminium. All the results are based on a CFD-Analysis with the following conditions. A geometry model of the entire configuration is created from the design drawings for the Golden DRAGON LED package and the geometry data of the test board and its metallization. The geometric and material data as well as the standard boundary conditions are listed in the following table. Component Outer PCB Dimensions L x W Board Material Material for Solder Pads Power Dissipation Air Velocity Ambient Temperature Golden DRAGON LED Variable MCPCB with thermal enhanced dielectric 35 µm Cu 1 W still air (free convection) 25 C In the analysis model the recommended solder pad layout of the Golden DRAGON LED is used. The solder pad layout is specified in the datasheet. The board is in test environment with two orientations according to gravity. In the thermal analysis heat transfer through conduction, convection and radiation is considered. Unless expressly stated, the steady state calculations are always performed with a fixed power dissipation of 1 W. Other heat sources, e.g. resistors, voltage regulators etc., are not considered in the analysis. 2 A: area exposed to fluid h: heat transfer coefficient The simulation results are valid under the mentioned boundary conditions. December, 213 Page 8 of 12

The thermal model can be seen in the following figures. Solder Pads 35 µm Copper Golden Dragon LED P D = 1 W Substrate MCPCB Thermal Resistance Rth (Board to Ambient) [K/W] 6 5 4 3 2 1 vertical orientation horizontal orientation Thermal Resistance Rth (Board to Ambient) V ariab le Dimension L L e nsion Dim V a ble ria 4 8 12 16 2 24 28 32 36 Substrate Area (Footprint) A [mm²] Figure 17: Thermal Resistance (Board to Ambient) vs. Substrate Area (Footprint) Figure 15: Thermal Model Configuration The example below illustrates the effect of a finned heat sink in still air environment. Horizontal Orientation Vertical Orientation According to the thermal analysis the fanned heat sink decreases the thermal resistance R thba in the range of 4 %. Gravity g The selection or construction of the heat sink strongly depends on the boundary conditions, e.g. velocity, orientation to gravity. Figure 16: Orientation of MCPCB with test environment Figure 17 shows the relation between thermal resistance (board to ambient) and the substrate area (footprint) with flat horizontal and vertical heat sink. Another way to extend the surface area to the coolant is the usage of heat sinks. Heat sinks vary in shape, size and material depending on application. Heat sinks may also be components or integrated in the system, like housing. In the above section the contact between heat sink and substrate was considered as ideal. In reality a thermal interface resistance formed between heat sink and the mounting area has taken into account. Under some circumstances, this contact resistance can be substantial, impeding heat flow and reducing the overall effectiveness of the heat sink. December, 213 Page 9 of 12

Summary The Golden DRAGON LED dissipates approximately 1 W of thermal energy. The thermal design in application is very critical. The application note shows some concepts to reduce the total thermal resistance R thja by optimising the thermal resistances R thsb and R thba. A general recommendation cannot be given due to the variety of application specific boundary conditions. Nevertheless important design rules are: 1.9.8.7.6.5.4.3.2.1 Figure 18: Vertical orientated flat heat sink (footprint: 25 mm x 25 mm) in still air 1. The thermal resistance from the back of the exposed heat spreader of the Golden DRAGON LED to the coolant must be kept to an optimum to ensure that the junction temperature is maintained below maximum allowable limits within the application specific boundary conditions. The operating environment has been carefully analysed. 2. The method to mount the Golden DRAGON LED is IR or reflow soldering. This ensures a good thermal contact between the internal heat spreader and the printed circuit board. Other soldering processes are not suitable. 1.9.8.7.6.5.4.3.2.1 3. Other electrical components, e.g. resistors, transistors have to be placed far away from the Golden DRAGON LED. They can act as additional heat sources and influences the thermal behaviour of the LED. 4. Depending on the environmental conditions in most cases an additional heat sinking is required. Figure 19: Vertical orientated fanned heat sink (footprint: 25 mm x 25 mm) in still air December, 213 Page 1 of 12

In the concept phase numerical methods, e.g. thermal analysis software can support the design process. When physical prototypes of the application are available, it is very important to evaluate the design according to the thermal behaviour. Within the evaluation the expected ambient temperature range have to be examined. Appendix Don't forget: LED Light for you is your place to be whenever you are looking for information or worldwide partners for your LED Lighting project. www.ledlightforyou.com Author: Rainer Huber ABOUT OSRAM OPTO SEMICONDUCTORS OSRAM, Munich, Germany is one of the two leading light manufacturers in the world. Its subsidiary, OSRAM Opto Semiconductors GmbH in Regensburg (Germany), offers its customers solutions based on semiconductor technology for lighting, sensor and visualization applications. Osram Opto Semiconductors has production sites in Regensburg (Germany), Penang (Malaysia) and Wuxi (China). Its headquarters for North America is in Sunnyvale (USA), and for Asia in Hong Kong. Osram Opto Semiconductors also has sales offices throughout the world. For more information go to www.osram-os.com. December, 213 Page 11 of 12

DISCLAIMER PLEASE CAREFULLY READ THE BELOW TERMS AND CONDITIONS BEFORE USING THE INFORMATION SHOWN HEREIN. IF YOU DO NOT AGREE WITH ANY OF THESE TERMS AND CONDITIONS, DO NOT USE THE INFORMATION. The information shown in this document is provided by OSRAM Opto Semiconductors GmbH on an as is basis and without OSRAM Opto Semiconductors GmbH assuming, express or implied, any warranty or liability whatsoever, including, but not limited to the warranties of correctness, completeness, merchantability, fitness for a particular purpose, title or non-infringement of rights. In no event shall OSRAM Opto Semiconductors GmbH be liable - regardless of the legal theory - for any direct, indirect, special, incidental, exemplary, consequential, or punitive damages related to the use of the information. This limitation shall apply even if OSRAM Opto Semiconductors GmbH has been advised of possible damages. As some jurisdictions do not allow the exclusion of certain warranties or limitations of liability, the above limitations or exclusions might not apply. The liability of OSRAM Opto Semiconductors GmbH would in such case be limited to the greatest extent permitted by law. OSRAM Opto Semiconductors GmbH may change the information shown herein at anytime without notice to users and is not obligated to provide any maintenance (including updates or notifications upon changes) or support related to the information. Any rights not expressly granted herein are reserved. Except for the right to use the information shown herein, no other rights are granted nor shall any obligation be implied requiring the grant of further rights. Any and all rights or licenses for or regarding patents or patent applications are expressly excluded. December, 213 Page 12 of 12